DOI:10.16861/j.cnki.zggc.2024.0837

基因型与环境及其互作效应对菜心 主要农艺性状的影响

龚泽平1,李梓瑜1,黄红弟2,郭少龙2,郭培国1,夏岩石1

(1.广州大学生命科学学院•广东省植物适应性与分子设计重点实验室 广州 510006; 2.广东省良种引进服务公司 广州 510091)

摘 要:为筛选出高产、优质且广适性强的菜心种质,对不同地理来源的 173 份菜心材料在 6 个种植环境下的主要 农艺性状进行变异特征和广义遗传力分析,并利用 GGE 双标图分析基因型与环境的互作效应。结果显示,在收集 的菜心群体中,开展度、单株质量、株高、最大叶长、最大叶宽、最大叶柄长、叶色和开花期等 8 个农艺性状表现出丰富的变异,变异系数在 6.65%~80.42%,平均变异系数单株质量最高(80.42%),开花期最低(6.65%);广义遗传力在 52.94%~90.12%,以最大叶长(90.12%)和最大叶柄长(89.63%)的遗传力最强,而株高的遗传力最弱(52.94%),容易受到环境影响。通过 GGE 双标图分析,筛选出 14 份菜心种质在不同的种植环境具有良好适应性,21 份菜心种质具有稳定且理想的表型性状。本研究结果可为菜心优异互补亲本的选择提供理论依据,将促进高产优质菜心新品种的选育。

关键词:菜心:农艺性状;基因型与环境互作;GGE 双标图

中图分类号:S634.5

文献标志码:A

文章编号:1673-2871(2025)10-117-15

Effects of genotype and environment and their interaction effects on major agronomic traits in flowering Chinese cabbage

GONG Zeping¹, LI Ziyu¹, HUANG Hongdi², GUO Shaolong², GUO Peiguo¹, XIA Yanshi¹

(1. College of Life Sciences, Guangzhou University/Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou 510006, Guangdong, China; 2. Guangdong Provincial Improved Variety Introduce Service Corp, Guangzhou 510091, Guangdong, China)

Abstract: To screen for high-yield, high-quality, and widely adaptable flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. Utilis Tsen et Lee.) germplasm, this study analyzed the variation of key agronomic traits and their broad-sense heritability across 173 flowering Chinese cabbage accessions from diverse geographical origins under six planting environments. The genotype-environment interactions were evaluated using GGE biplot analysis. The results revealed extensive variation in eight agronomic traits within the collected flowering Chinese cabbage population: Plant spread, single plant mass, plant height, maximum leaf length, maximum leaf width, maximum petiole length, leaf color, and flowering time. The coefficient of variation (CV) ranged from 6.65% to 80.42%, with the highest average coefficent of variation observed for single plant mass (80.42%) and the lowest for flowering time (6.65%). Broad-sense heritability ranged from 52.94% to 90.12%, with maximum leaf length (90.12%) and maximum petiole length (89.63%) demonstrating strong genetic determination, while plant height exhibited the lowest heritability (52.94%), indicating its susceptibility to environmental influence. Through GGE biplot analysis, 14 accessions with consistent adaptability across environments and 21 with stable, desirable phenotypic traits were identified. These findings provide valuable insights for selecting complementary parental lines in breeding programs aimed at developing superior flowering Chinese cabbage varieties.

Key word: Flowering Chinese cabbage; Agronomic trait; Interaction of genotype and environment; GGE biplot

收稿日期:2024-12-27;修回日期:2025-04-22

基金项目:广东省乡村振兴战略专项(2024-NPY-03-001);广州市科技计划项目(202102010414)

作者简介: 龚泽平, 男, 在读硕士研究生, 研究方向为蔬菜遗传育种。E-mail: 2918394107@gg.com

通信作者:夏岩石,男,副教授,主要从事蔬菜分子遗传育种研究工作。E-mail:xiayanshi922@gzhu.edu.cn

菜心(Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee)别名菜薹,是十字花科芸薹属的一 二年生草本植物,由不结球白菜经过长期驯化形 成,是我国华南地区的特产蔬菜[1]。随着菜心影响 力的不断扩大,菜心的栽培地区已从华南地区发展 至华中、华北等地区,菜心的市场需求也已扩大到 海外,如欧洲、东南亚等市场四。菜心的农艺性状不 仅与基因型有关,还会受到种植环境的影响,同一 品种的性状在不同环境中表现不一[2-4],而关于不同 菜心品种在不同地区的生长状态和性状稳定性的 研究鲜有报道,这严重限制了菜心种植产业的发 展。优质品种不仅具有优良的性状表现,同时也需 要具备良好的稳定性和适应性。优良的性状表现 可以通过肉眼或者一些工具观测出来,但是对于品 种的稳定性和适应性则需要同时考虑基因型效应 (G)、环境效应(E)和基因型环境互作效应(GE)[5]。 为此,20世纪中期以来,出现了 Eberhart 等间回归模 型、Finlay等问回归模型、高稳系数法图、主效可加互 作可乘模型(additive main effects and multiplicative interaction model, AMMI 模型)^[9]以及基因型主效应 加基因型环境互作效应模型(genotype main effect plus genotype × environment interaction model, GGE 模型)[10]等评价品种稳定性的分析方法。在以上分 析方法中,GGE模型聚焦于G和GE,能绘制出用 于解释互作效应的双标图,其功能更加全面,不仅 可以让人们直观地了解到品种的稳定性,还能对种 植环境进行区分鉴别和代表性评价[10]。GGE 模型 已经被广泛应用于高粱[11]、马铃薯[12]、花生[13]、玉米[14] 等作物的稳定性和适应性分析,然而菜心的相关研 究未曾有报道。

笔者以173份菜心种质为研究材料,分不同年份种植在3种地理环境中,对其开展度、单株质量、株高、最大叶长、最大叶宽、最大叶柄长、叶色和开花期等8个农艺性状进行统计分析,并利用GGE双标图来综合分析基因型与环境及其互作效应对菜心农艺性状的影响,以评价菜心种质材料的稳定性,为菜心品种的筛选和培育提供理论依据。

1 材料与方法

1.1 材料

173 份菜心种质材料由广州市农业科学研究院 广东省蔬菜种质资源库提供,编号为 1~121 的材料 为从全国各地收集的商品种和地方种,编号为 122~ 173 的材料(名称为 CX 系列)为广州市农业科学研 究院蔬菜研究所选育的中间材料(表1)。

1.2 试验设计及农艺性状的测量

2018—2023 年分别在宁夏银川市园艺产业园(银川市贺兰县)、广州市南沙试验基地(广州市南沙区)以及广州大学作物种植试验站(广州市番禺区)等 3 个试验地点进行 173 份菜心种质材料的种植试验(表 2)。采用育苗移栽的方法进行种植,移栽前施足基肥,然后精细整地,开沟,移栽,行株距为 18 cm×15 cm,常规田间管理。待到菜心"齐口花"时期,记录开花期,并随机选取 5 株,参考李荣华等[15]和严少杰[16]的方法测定植株的开展度、单株质量、株高、最大叶长、最大叶宽、最大叶柄长和叶色(SPAD)等农艺性状。

开展度:在采收期用刻度尺测量菜心在自然状态下基生叶开展的垂直投影最大宽度。

单株质量:在采收期用电子秤测定植株剔除根部后的质量。

株高:待植株生长至采收期,用刻度尺测量地面到花蕾顶部的高度。

最大叶长: 在采收期用刻度尺测量菜心最大基 生叶叶柄基部到叶片顶端的长度。

最大叶宽:在采收期用刻度尺测量菜心最大基 生叶最宽处的宽度。

最大叶柄长:在采收期用刻度尺测量菜心的最大基生叶叶片基部至叶柄基部的长度。

叶色:使用日产 SPAD-502 型叶绿素计测定菜 心自上而下第一片完全展开叶叶缘部的 SPAD 值,每片叶进行 3 次测量取平均值。

开花期:记录菜心从播种到 50%以上植株第一 朵花完全开放所需的时间。

1.3 农艺性状的数据分析

使用 Microsoft Excel 2021 和 SPSS 26.0 对菜心群体的农艺性状进行统计分析,计算开展度、单株质量、株高、最大叶长、最大叶宽、最大叶柄长、叶色和开花期等8个农艺性状的平均值、变异系数、偏度和峰度以及遗传多样性指数等。

1.4 遗传力的分析计算

运用 R 语言的 lme4 包来计算各个农艺性状的环境方差和遗传方差,然后参考吴超等[17]的方法计算广义遗传力 (H^2) ,计算公式如下:

$$H^2 = \frac{\sigma_g^2}{\sigma_g^2 + \frac{\sigma_e^2}{n}} \times 100\%.$$

其中, σ_g^2 表示遗传方差; σ_e^2 表示环境方差;n表

表 1 供试菜心种质材料

Table 1 173 flowering Chinese cabbage used in the study

		ible 1 1/3 flowering Chi			
编号 No.	种质名称 Germplasm name	来源 Source	编号 No.	种质名称 Germplasm name	来源 Source
1	苔多多 Taiduoduo	湖南株洲 Zhuzhou, Hunan	28	尖叶 50 天 Jianye 50-day	广东汕头 Shantou, Guangdong
2	超靓王 100 天 Chaoliangwang 100-day	广东广州 Guangzhou, Guangdong	29	丰宝 60 天尖叶 Fengbao 60-day Jianye	广东汕头 Shantou, Guangdong
3	美绿 Meilü	广东梅州 Meizhou, Guangdong	30	碧绿柳叶油青 Bilü Liuye Youqing	广东广州 Guangzhou, Guangdong
4	粗条 18 号甜 Cutiao No. 18 Tian	广东汕头 Shantou, Guangdong	31	翠绿 80 天尖叶 Cuilü 80-day Jianye	广东广州 Guangzhou, Guangdong
5	超恒 28 油青 Chaoheng 28 Youqing	广西南宁 Nanning, Guangxi	32	加州翠绿 California green	吉林长春 Changchun, Jilin
6	31 号甜菜心 No. 31 Sugar beet	广东汕头 Shantou, Guangdong	33	翠绿 80 天油青 Cuilü 80-day Youqing	广东清远 Qingyuan, Guangdong
7	3T-6	广东广州 Guangzhou, Guangdong	34	翠绿 70 天尖叶 Cuilü 70-day Jianye	福建福州 Fuzhou, Fujian
8	极品 408 甜 Jipin 408 tian	广东广州 Guangzhou, Guangdong	35	翠绿王 80 天 Cuilüwang 80-day	广东清远 Qingyuan, Guangdong
9	济平 50 天尖叶 Jiping 50-day Jianye	广东广州 Guangzhou, Guangdong	36	大种 80 天油绿 Dazhong 80-day Youlü	广东汕头 Shantou, Guangdong
10	60 天特青 60-day Teqing	广东广州 Guangzhou, Guangdong	37	80 天交菜特青 80-day Jiaocai Teqing	广东梅州 Meizhou, Guangdong
11	60 天特青甜 60-day Teqingtian	广东梅州 Meizhou, Guangdong	38	冬柱玉 120 天 Dongzhuyu 120-day	广东广州 Guangzhou, Guangdong
12	柳叶 701 Liuye 701	广东广州 Guangzhou, Guangdong	39	皇丰甜 Hunagfengtian	河南南阳 Nanyang, Henan
13	80 天多芽粗条 80-day Duoyacutiao	广西南宁 Nanning, Guangxi	40	福田菜心 Futian flowering cabbage	广东惠州 Huizhou, Guangdong
14	80 天油青甜 80-day Youqingtian	广东广州 Guangzhou, Guangdong	41	228 甜菜心 228 Sweet flowering cabbage	广东梅州 Meizhou, Guangdong
15	丰郁 90 天特青 Fengyu 90-day Teqing	广东清远 Qingyuan, Guangdong	42	油青甜菜心 Youqing Sweet flowering cabbage	广东梅州 Meizhou, Guangdong
16	FSF 菜心 FSF flowering cabbage	广东广州 Guangzhou, Guangdong	43	桂林卷叶甜脆 Guilin Juanye Tiancui	广西南宁 Nanning, Guangxi
17	深圳 60 天油青 Shenzhen 60-days Youqing	广东深圳 Shenzhen, Guangdong	44	海南本地迟花 Hainan Bendi Chihua	海南海口 Haikou, Hainan
18	澳洲超级 701 Australian Super 701	广西南宁 Nanning, Guangxi	45	航育 49-1 Hangyu 49-1	广东广州 Guangzhou, Guangdong
19	澳洲 120 天迟花 Australian 120-day late flower	广西南宁 Nanning, Guangxi	46	金沙 32 号黄叶 Jinsha No. 32 Huangye	广东汕头 Shantou, Guangdong
20	油青甜脆 Youqing Tiancui	广西南宁 Nanning, Guangxi	47	尖叶甜脆 Jianye Tiancui	广东梅州 Meizhou, Guangdong
21	澳洲金牌 5 号 Australian Gold Medal No. 5	广东广州 Guangzhou, Guangdong	48	金船尖叶 Jinchuan Jianye	江西赣州 Ganzhou, Jiangxi
22	澳洲翠绿 60 天 Australian green 60-day	广西南宁 Nanning, Guangxi	49	金辉 611 特青 Jinhui 611 Teqing	吉林长春 Changchun, Jilin
23	澳洲 70 天粗条 Australian 70-day thick strip	广东深圳 Shenzhen, Guangdong	50	金沙 80 天油 Jinsha 80-day You	广东汕头 Shantou, Guangdong
24	澳洲翠绿 70 天 Australian green 70-day	广东梅州 Meizhou, Guangdong	51	抗病油绿 60 天 Kangbing Youlü 60-day	广东广州 Guangzhou, Guangdong
25	碧绿粗薹菜心 Bilü Cutai flowering cabbage	广东广州 Guangzhou, Guangdong	52	抗热油青甜 Kangre Youqingtian	广东广州 Guangzhou, Guangdong
26	粗条尖叶 80 天 Cutiao Jianye 80-day	广东深圳 Shenzhen, Guangdong	53	佳丽 60 天尖叶 Jiali 60-day Jianye	广东揭阳 Jieyang, Guangdong
27	粗条油青 Cutiao Youqing	广东广州 Guangzhou, Guangdong	54	澳洲 120 天 Australian 120-day	广东揭阳 Jieyang, Guangdong

表1(续)

Table 1 (Continued)

		Table 1	Contin	ucu	
编号 No.	种质名称 Germplasm name	来源 Source	编号 No.	种质名称 Germplasm name	来源 Source
55	888 连州菜心 888 Lianzhou flowering cabbage	广东清远 Qingyuan, Guangdong	84	丰速 50 天尖叶 Fengsu 50-day Jianye	广东揭阳 Jieyang, Guangdong
56	柳叶 50 Liuye 50	广东江门 Jiangmen, Guangdong	85	41 香港菜场 4 号 41 Hong Kong Caichang No. 4	广西南宁 Nanning, Guangxi
57	特绿 701 甜 Telü 701 Tian	广东清远 Qingyuan, Guangdong	86	香港菜场 4 号 Hong Kong Caichang No. 4	广东深圳 Shenzhen, Guangdong
58	柳叶粗条 42 号 Liuye Cutiao No. 42	广东广州 Guangzhou, Guangdong	87	石排菜心 Shipai flowering cabbage	广西南宁 Nanning, Guangxi
59	同叶 60 天 Tongye 60-day	广东广州 Guangzhou, Guangdong	88	香院菜场 43 Xiangyuan Caichang 43	广东广州 Guangzhou, Guangdong
60	新西兰绿宝 70 天 New Zealand Lübao 70-day	广东深圳 Shenzhen, Guangdong	89	湘红苔一号 Xiang Hongtai No. 1	湖南长沙 Changsha, Hunan
61	70 天特青 70-day Teqing	广东广州 Guangzhou, Guangdong	90	多芽菜心 Duoya flowering cabbage	广东深圳 Shenzhen, Guangdong
62	油青尖叶甜 Youqing Jianyetian	广东广州 Guangzhou, Guangdong	91	特交 45 天 Tejiao 45-day	广东梅州 Meizhou, Guangdong
63	M120 油青甜 M120 Youqingtian	广西南宁 Nanning, Guangxi	92	新西兰 60 天 New Zealand 60-day	广西南宁 Nanning, Guangxi
64	无渣 80 天油青 Wuzha 80-day Youqing	广东广州 Guangzhou, Guangdong	93	多芽 90 天尖叶 Duoya 90-day Jianye	广东深圳 Shenzhen, Guangdong
65	一哥尖叶 Yige Jianye	广东广州 Guangzhou, Guangdong	94	858 油青甜 858 Youqingtian	广西南宁 Nanning, Guangxi
66	农鑫尖叶深油青 Nongxin Jianye Shenyouqing	广东广州 Guangzhou, Guangdong	95	858 油青甜菜心王 858 Youqing Tiancaixinwang	广西南宁 Nanning, Guangxi
67	农鑫抗病油青 Nongxin Kangbing Youqing	广东广州 Guangzhou, Guangdong	96	新西兰 90 甜多芽 New Zealand 90 Tianduoya	广西南宁 Nanning, Guangxi
68	油青 408 菜心 Youqing 408 Flowering cabbage	广东广州 Guangzhou, Guangdong	97	新西兰 D30 New Zealand D30	广西南宁 Nanning, Guangxi
69	农苑超级 50 天 Nongyuan super 50-day	湖南长沙 Changsha, Hunan	98	新西兰华绿 50 天 New Zealand Hualü 50-day	广东深圳 Shenzhen, Guangdong
70	农苑尖叶 Nongyuan Jianye	湖南长沙 Changsha, Hunan	99	4560 菜心 4560 Flowering cabbage	广西南宁 Nanning, Guangxi
71	强盛尖叶 Qiangshen Jianye	山西太原 Taiyuan, Shanxi	100	新西兰杷洲甜油 New Zealand Pazhou sweet oil	广西南宁 Nanning, Guangxi
72	青春菜心 Qingchun flowering cabbage	广东广州 Guangzhou, Guangdong	101	新西兰杷洲 50 天 New Zealand Pazhou 50-day	广西南宁 Nanning, Guangxi
73	树头丁油绿 Shutouding Youlü	广东江门 Jiangmen, Guangdong	102	新西兰杷洲 3045 New Zealand Pazhou 3045	广西南宁 Nanning, Guangxi
74	四季多仔 Siji Duozai	河北沧州 Cangzhou, Hebei	103	新西兰杞湘 50 天 New Zealand Qixiang 50-day	广西南宁 Nanning, Guangxi
75	四季油绿 Siji Youlü	河北沧州 Cangzhou, Hebei	104	特青 120 天油青 Teqing 120-day Youqing	广东广州 Guangzhou, Guangdong
76	49 菜心 49 Flowering cabbage	广东广州 Guangzhou, Guangdong	105	严选特靓 A50 Yanxuan Teliang A50	广东广州 Guangzhou, Guangdong
77	台湾四九甜 Taiwan Sijiutian	福建福州 Fuzhou, Fujian	106	一枝花全年尖叶 Yizhihua Quannianjianye	广东广州 Guangzhou, Guangdong
78	特级粗学 31 号 Teji Cuxue No. 31	广东江门 Jiangmen, Guangdong	107	油绿 501 Youlü 501	广东广州 Guangzhou, Guangdong
79	特尖 333 甜 Tejian 333 Tian	广东广州 Guangzhou, Guangdong	108	美丽 702 Meili 702	广东广州 Guangzhou, Guangdong
80	特交 30 甜 Tejiao 30 Tian	广东广州 Guangzhou, Guangdong	109	油绿 70 天菜心 Youlü 70-day flowering cabbage	广东广州 Guangzhou, Guangdong
81	特色农家宝 Tese Nongjiabao	广东广州 Guangzhou, Guangdong	110	特兰 80 天油青 Telan 80-day Youqing	广东广州 Guangzhou, Guangdong
82	田 A 菜心 Tian A flowering cabbage	广东广州 Guangzhou, Guangdong	111	80 天尖叶油绿 80-day Jianye Youlü	广东广州 Guangzhou, Guangdong
83	丰翠尖叶油青 Fengcui Jianye Youqing	广东广州 Guangzhou, Guangdong	112	油绿粗薹菜心 Youlü Cutai flowering cabbage	广东广州 Guangzhou, Guangdong

表 1 (续) Table 1 (Continued)

		Table 1 (Cont			
编号 No.	种质名称 Germplasm name	来源 Source	编号 No.	种质名称 Germplasm name	来源 Source
113	油青菜心 Youqing flowering cabbage	广东广州 Guangzhou, Guangdong	144	CX23	广东广州 Guangzhou, Guangdong
114	农美 45 天油青 Nongmei 45-day Youqing	广东江门 Jiangmen, Guangdong	145	CX24	广东广州 Guangzhou, Guangdong
115	油青四九菜心 Youqing Sijiu flowering cabbage	广东广州 Guangzhou, Guangdong	146	CX25	广东广州 Guangzhou, Guangdong
116	粤丰 D32 菜心 Yuefeng D32 flowering cabbage	广东湛江 Zhanjiang, Guangdong	147	CX26	广东广州 Guangzhou, Guangdong
117	增城 1 号 Zengcheng No. 1	广东广州 Guangzhou, Guangdong	148	CX27	广东广州 Guangzhou, Guangdong
118	增城迟甜 Zengcheng Chitian	广东广州 Guangzhou, Guangdong	149	CX28	广东广州 Guangzhou, Guangdong
119	香港中花特青 Hong Kong Mid Flower Teqing	广西南宁 Nanning, Guangxi	150	CX29	广东广州 Guangzhou, Guangdong
120	中南 55 天尖叶 Zhongnan 55-day Jianye	广东广州 Guangzhou, Guangdong	151	CX30	广东广州 Guangzhou, Guangdong
121	44 中南尖叶 44 Zhongnan Jianye	广东广州 Guangzhou, Guangdong	152	CX31	广东广州 Guangzhou, Guangdong
122	CX1	广东广州 Guangzhou, Guangdong	153	CX32	广东广州 Guangzhou, Guangdong
123	CX2	广东广州 Guangzhou, Guangdong	154	CX33	广东广州 Guangzhou, Guangdong
124	CX3	广东广州 Guangzhou, Guangdong	155	CX34	广东广州 Guangzhou, Guangdong
125	CX4	广东广州 Guangzhou, Guangdong	156	CX35	广东广州 Guangzhou, Guangdong
126	CX5	广东广州 Guangzhou, Guangdong	157	CX36	广东广州 Guangzhou, Guangdong
127	CX6	广东广州 Guangzhou, Guangdong	158	CX37	广东广州 Guangzhou, Guangdong
128	CX7	广东广州 Guangzhou, Guangdong	159	CX38	广东广州 Guangzhou, Guangdong
129	CX8	广东广州 Guangzhou, Guangdong	160	CX39	广东广州 Guangzhou, Guangdong
130	CX9	广东广州 Guangzhou, Guangdong	161	CX40	广东广州 Guangzhou, Guangdong
131	CX10	广东广州 Guangzhou, Guangdong	162	CX41	广东广州 Guangzhou, Guangdong
132	CX11	广东广州 Guangzhou, Guangdong	163	CX42	广东广州 Guangzhou, Guangdong
133	CX12	广东广州 Guangzhou, Guangdong	164	CX43	广东广州 Guangzhou, Guangdong
134	CX13	广东广州 Guangzhou, Guangdong	165	CX44	广东广州 Guangzhou, Guangdong
135	CX14	广东广州 Guangzhou, Guangdong	166	CX45	广东广州 Guangzhou, Guangdong
136	CX15	广东广州 Guangzhou, Guangdong	167	CX46	广东广州 Guangzhou, Guangdong
137	CX16	广东广州 Guangzhou, Guangdong	168	CX47	广东广州 Guangzhou, Guangdong
138	CX17	广东广州 Guangzhou, Guangdong	169	CX48	广东广州 Guangzhou, Guangdong
139	CX18	广东广州 Guangzhou, Guangdong	170	CX49	广东广州 Guangzhou, Guangdong
140	CX19	广东广州 Guangzhou, Guangdong	171	CX50	广东广州 Guangzhou, Guangdong
141	CX20	广东广州 Guangzhou, Guangdong	172	CX51	广东广州 Guangzhou, Guangdong
142	CX21	广东广州 Guangzhou, Guangdong	173	CX52	广东广州 Guangzhou, Guangdong
143	CX22	广东广州 Guangzhou, Guangdong			

表 2 试验地点概况

Table 2 Basic information of experimental locations

地点	种植时间	经度	纬度	海拔	均温	代号
Location	Planting time	Longitude	Latitude	Altitude/m	Mean temperature/°C	Code
宁夏银川市园艺产业园	2018-07-2018-08	106°32′	38°59'	1 105.16	24.60	E1
Ningxia Yinchuan Horticultural Industrial Park						
宁夏银川市园艺产业园	2019-07-2019-08	106°32′	38°59′	1 105.16	23.71	E2
Ningxia Yinchuan Horticultural Industrial Park						
广州市南沙试验地	2019-10-2019-11	113°57′	22°71′	-1.48	24.13	E3
Guangzhou Nansha Experimental Location						
广州市南沙试验地	2020-10-2020-11	113°57′	22°71′	-1.48	23.77	E4
Guangzhou Nansha Experimental Location						
广州大学作物种植试验站	2022-10-2022-11	113°37′	23°05′	13.23	24.13	E5
Guangzhou University Crop Planting Test Station						
广州大学作物种植试验站	2023-10-2023-11	113°37′	23°05′	13.23	23.35	E6
Guangzhou University Crop Planting Test Station						

示环境数目。

1.5 GGE模型及GGE双标图的构建

GGE 双标图也称环境中心化的双标图,是在初始数据中减去环境均值后,再在互作效应中将基因型效应进行奇异值分解[18],其模型如下:

$$Y_{ge} = \mu + \beta + \sum_{n} \lambda_n \gamma_{gn} \delta_{en} + \rho_{ge} + \varepsilon_{ge}$$

 Y_{se} 代表在 e 环境下品种 g 的性状值, μ 代表所有品种在所有环境中的总体均值, β_e 代表环境的均值, λ_n 代表第 n 个主成分的奇异值, γ_{sn} 代表第 g 个品种第 n 个主成分的品种得分, δ_{en} 代表第 e 个环境第 n 个主成分的环境得分, ρ_{se} 代表品种 g 在 e 环境中残差, ε_{ee} 代表试验残差。

运用 R 语言的 GGEBiplotGUI 包来绘制 GGE 双标图[19]。

GGE 双标图具有多种功能,可以从多种角度来评价品种和试点^[20],比如,"Which Won Where / What"双标图可以用来分析品种的最佳种植地点;"Mean vs. Stability"双标图可以用来分析品种的性状表现及其稳定性。

2 结果与分析

2.1 菜心种质材料主要农艺性状的变异特征

在6个试验地点中,8个农艺性状的变异特征由表3可知,菜心种质材料间的农艺性状在不同试点中都表现出较大差异,变异系数变化范围在6.65%~80.42%,其中E6试点中开花期的变异系数最小,仅为6.65%,E5环境中单株质量的变异系数最大,达到80.42%。8个农艺性状的平均变异系数大小显示为单株质量(60.97%)>最大叶柄长(41.64%)>最大叶长(28.22%)>株高(26.95%)>

最大叶宽(26.59%)>开展度(21.52%)>叶色(10.89%)>开花期(10.24%)。从遗传多样性指数来看,8个农艺性状在6个试验地点中的遗传多样性指数介于1.62~2.08,均具有较为丰富的遗传多样性。同时,农艺性状间的峰度值和偏度值具有较大差异,其中E1试点的株高和开花期、E3试点的株高以及E5和E6试点开花期的峰度值均小于0,其余农艺性状在不同试点的峰度值都大于0,呈现为尖峰态;不同试点的开展度、单株质量、最大叶长和最大叶柄长等4个农艺性状的偏度值都比较大(>0.5),说明在群体材料中这4个农艺性状的正态分布呈现较为明显的右偏离,性状表现低于平均值的菜心种质材料较多。

8 个农艺性状的广义遗传力如表 4 所示,其大小分别为最大叶长(90.12%)>最大叶柄长(89.63%)>最大叶宽(79.27%)>开展度(79.02%)>开花期(76.08%)>叶色(73.38%)>单株质量(71.91%)>株高(52.94%),说明株高性状的表现相比于其他性状更容易受到环境的影响。

2.2 菜心种质材料的适应性分析

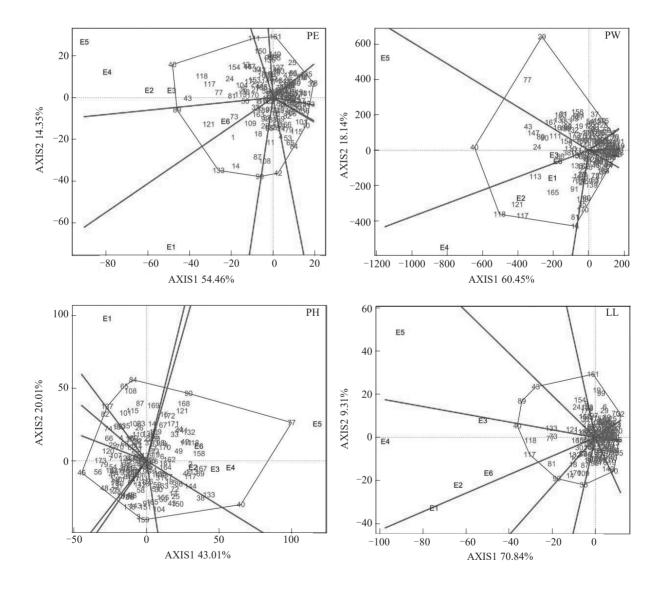

利用 GGE 双标图中的"Which-Won-Where" View 功能并采用聚焦环境的特征值分配方法(column metric preserving)来对试点进行分组并找出在各个分组中农艺性状表现最突出的品种。图 1 GGE 双标图显示了主成分 1 (AXIS1)和主成分 2 (AXIS2)对总变异的贡献率,开展度、单株质量、株高、最大叶长、最大叶宽、最大叶柄长、叶色和开花期等 8 个农艺性状的两个主成分贡献率总和分别为 68.81%、78.59%、63.02%、80.15%、67.19%、82.38%、60.66%和 79.92%。图 1 中的多边形由最

表 3 菜心种质材料的农艺性状统计结果
Table 3 Statistical results of agronomic traits in flowering Chinese cabbage

	Table 3 Statistical results of agronomic traits in flowering Chinese cabbage								
农艺性状 Agronomic trait	试点 Location	变幅 Range of change	峰度 Kurtosis	偏度 Skewness	平均值 Mean	变异系数 CV/%	遗传多样性指数 Shannon-Wiener diversity index(H')		
开展度	E1	16.00 ~ 56.00	1.96	1.15	28.77	23.31	1.93		
Plant expansion/cm	E2	$16.00 \sim 57.48$	2.65	1.29	28.55	22.33	1.93		
	E3	$11.00 \sim 47.90$	4.08	1.21	25.92	19.67	1.93		
	E4	14.97 ~ 57.47	1.21	1.02	31.86	22.76	1.93		
	E5	15.37 ~ 69.65	4.29	1.37	31.52	25.79	1.91		
	E6	19.70 ~ 45.33	2.00	0.95	28.14	15.23	1.98		
单株质量	E1	$27.07 \sim 262.60$	0.65	0.89	111.54	42.20	1.96		
Single plant mass/g	E2	17.06 ~ 296.81	3.28	1.79	70.63	74.20	1.62		
	E3	$10.07 \sim 154.85$	5.69	1.86	40.28	55.82	1.84		
	E4	18.57 ~ 484.85	6.16	2.09	109.49	71.63	1.73		
	E5	$10.12 \sim 542.83$	3.10	1.60	119.87	80.42	1.80		
	E6	17.06 ~ 203.91	3.47	1.35	66.07	41.58	1.91		
株高	E1	$6.17 \sim 45.00$	-0.08	0.40	22.37	35.18	2.05		
Plant height/cm	E2	11.13 ~ 41.58	1.57	0.96	23.20	20.95	1.98		
	E3	13.44 ~ 46.50	-0.19	0.13	27.74	23.13	2.07		
	E4	15.30 ~ 58.10	1.61	0.94	29.74	24.02	1.78		
	E5	$7.70 \sim 88.15$	7.27	1.56	27.71	35.67	1.99		
	E6	11.46 ~ 48.56	2.83	1.05	22.89	22.77	2.01		
最大叶长	E1	15.23 ~ 50.67	1.89	1.30	27.19	25.35	1.87		
Max leaf length/cm	E2	11.29 ~ 44.97	2.26	1.29	20.26	29.69	1.87		
	E3	$7.00 \sim 42.50$	4.69	1.53	17.41	28.10	1.94		
	E4	8.20 ~ 66.20	6.33	2.05	24.29	34.04	1.80		
	E5	12.97 ~ 61.80	4.18	1.68	26.10	30.76	1.87		
	E6	$14.20 \sim 44.83$	2.76	1.21	23.94	21.41	1.95		
最大叶宽	E1	$5.00 \sim 19.40$	1.14	0.65	11.41	20.39	1.99		
Max leaf width/cm	E2	4.30 ~ 17.56	1.26	1.15	9.02	27.24	1.86		
	E3	$2.46 \sim 19.20$	5.62	1.75	5.70	42.56	1.88		
	E4	$5.43 \sim 20.87$	0.46	0.49	11.41	24.29	2.04		
	E5	$3.17 \sim 21.27$	0.95	0.53	10.90	28.15	2.03		
	E6	5.53 ~ 14.80	0.29	0.38	9.37	16.92	2.06		
最大叶柄长	E1	$4.00 \sim 26.00$	1.87	1.27	10.84	38.63	1.90		
Max petiole length/	E2	$3.16 \sim 20.65$	2.48	1.44	8.11	41.61	1.86		
cm	E3	3.40 ~ 17.60	2.47	0.91	8.26	24.01	2.01		
	E4	2.33 ~ 32.80	6.77	2.21	8.18	56.16	1.72		
	E5	$1.33 \sim 30.50$	12.38	2.64	6.12	60.11	1.79		
	E6	$4.20 \sim 19.70$	0.85	0.87	10.03	29.33	1.98		
叶色	E1	35.20 ~ 64.80	0.55	-0.09	51.25	10.59	2.03		
Leaf colour/SPAD	E2	38.48 ~ 63.55	0.29	-0.01	50.84	8.66	2.06		
	E3	$32.40 \sim 73.40$	1.07	-0.26	54.51	11.53	2.04		
	E4	21.40 ~ 63.00	1.74	-0.58	48.71	12.34	2.03		
	E5	25.15 ~ 59.47	0.82	-0.34	45.56	12.25	2.04		
	E6	34.70 ~ 58.97	0.08	0.45	45.10	10.00	2.08		
开花期	E1	$38.67 \sim 60.00$	-0.03	0.72	46.42	10.68	1.97		
Flowering stage/d	E2	22.50 ~ 51.50	1.40	1.04	34.14	13.42	1.95		
	E3	25.00 ~ 58.00	16.16	2.28	38.23	7.76	1.65		
	E4	33.00 ~ 64.00	7.22	1.54	43.19	8.77	1.87		
	E5	$43.00 \sim 80.53$	-0.90	-0.02	60.29	14.16	2.04		
	E6	$40.00 \sim 54.30$	-0.40	0.15	45.96	6.65	1.95		

表 4 农艺性状的遗传力 Table 4 Heritability of agronomic traits

农艺性状	遗传方差	环境方差	表型方差	广义遗传力
Agronomic traits	Genetic variance	Environmental variance	Phenotypic variance	Broad heritability/%
开展度 Plant expansion	15.99	25.44	20.23	79.02
单株质量 Single plant mass	1 080.00	2 530.98	1 501.83	71.91
株高 Plant height	7.96	42.48	15.04	52.94
最大叶长 Max leaf length	26.81	17.64	29.75	90.12
最大叶宽 Max leaf width	2.40	3.78	3.02	79.27
最大叶柄长 Max petiole length	7.49	5.22	8.36	89.63
叶色 Leaf colour	9.23	20.10	12.58	73.38
开花期 Flowering stage	8.72	16.44	11.46	76.08

注:PE 代表开展度;PW 代表单株质量;PH 代表株高;LL 代表最大叶长;LW 代表最大叶宽;PeL 代表最大叶柄长;LC 代表叶色;FS 代表开花期。下同。

Note: PE represents plant expansion; PW represents the single plant mass; PH represents plant height; LL represents max leaf length; LW represents max leaf width; PeL max represents petiole length; LC represents leaf color; FS represents flowering stage. The same below.

图 1 基于 GGE 双标图的适应性分析

Fig. 1 Adaptation analysis based on GGE biplot

图 1 (续) Fig. 1 (Continued)

外围的种质材料依次连接而成,整个多边形包含所 有的种质材料,图中射线为由原点出发向多边形各 边所作的垂线,把多边形分成多个扇区,并由此把 试点分为不同的组,同一扇区内的试点被分为一 组,而该扇区各顶点的种质材料则是该组内各试点 的性状表现最突出的种质材料;没有包含试点的扇 区,其各顶点的种质材料在所有试点中表现不佳。 由图 1 可知,基于 8 个农艺性状的 GGE 双标图分 别将 6 个试验地点分为 1~3 组,其中开花期的 GGE 双标图将 6 个试点归为 1 组;开展度和叶色的 GGE 双标图将6个试点分为3组;而其他5个农艺性状 的 GGE 双标图将 6 个试点分为 2 组。利用 GGE 双标图共筛选到 14 个在不同种植环境下表现出良 好适应性的菜心种质材料,其中40号种质材料的 开展度、单株质量、株高、最大叶长和最大叶宽等5 个性状在相应分组内的试点中表现最突出;89号 种质材料的开展度、最大叶长、最大叶宽和最大叶柄长等4个性状在相应分组内的试点中表现最突出;90号种质材料的开展度和最大叶柄长在相应分组内的试点中表现最突出;118号种质材料的单株质量和开花期在相应分组内的试点中表现最突出;而其他10个菜心种质材料仅有1个农艺性状在相应分组内的试点中表现最突出(表5)。

2.3 菜心种质材料农艺性状的稳定性

利用 GGE 双标图中的"Mean vs Stability"功能 并采用聚焦品种的特征值分配方法(row metric preserving)分析菜心各种质材料农艺性状的稳定性。 图 2 中带箭头的直线为平均环境轴,箭头所指方向 为各种质材料在所有试点中的平均性状表现,即沿 箭头的方向移动,种质材料的性状表现越突出;图 中虚线是各种质材料向平均环境轴所作的垂线,其 长短代表着种质材料的稳定性,越偏离平均环境轴

表 5 菜心种质材料适应性的统计结果

Table 5 Statistical results of the adaptability of flowering Chinese cabbage

	*	
农艺性状	试验点分组	性状突出的种质材料
Agronomic trait	Location classification	Germplasm materials with outstanding traits
开展度	E2\E3\E4\E5	40
Plant expansion	E6	89
	E1	90、133
单株质量	E3、E5、E6	40
Single plant mass	E1,E2,E4	14、118
株高	E2\E3\E4\E5\E6	40、77
Plant height	E1	84
最大叶长	E1\E2\E3\E4\E6	40、117
Max leaf length	E5	43,89
最大叶宽	E1\E2\E3\E4\E6	40、89
Max leaf width	E5	147
最大叶柄长	E2\E3\E4\E5\E6	89
Max petiole length	E1	90
叶色	E3、E5、E6	30
Leaf colour	E1,E2	37
	E4	57
开花期 Flowering stage	E1\E2\E3\E4\E5\E6	118

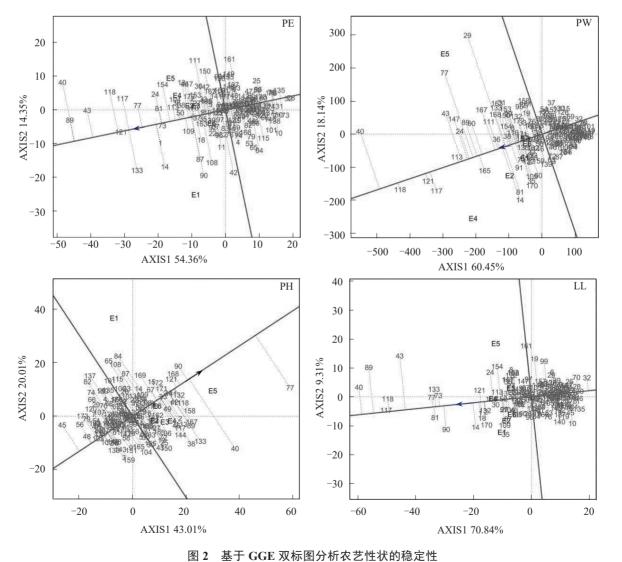


Fig. 2 Stability of agronomic traits based on GGE biplot

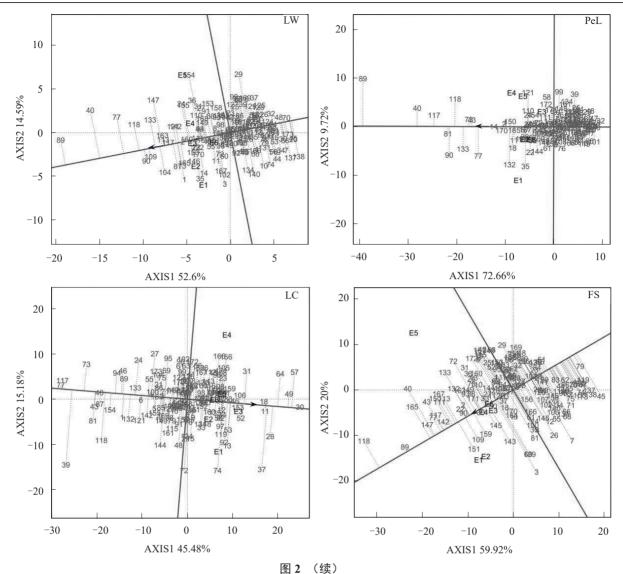


Fig. 2 (Continued)

表示种质材料的性状表现越不稳定;图中垂直于平均环境轴的实线所在的位置表示总体平均性状表现。经稳定性分析,分别筛选出了每种农艺性状表现最突出、性状表现最不稳定以及性状表现最不突出的种质材料(表 6),其中 89 号种质材料具有最大

开展度、最大叶宽以及最大叶柄长的表型,但其最大叶柄长表现最不稳定;40号种质材料的单株质量最大,并且具有最大叶长,但其株高最不稳定;32号种质材料具有最短的叶片以及最短的叶柄。其余大多数品种的性状表现都与总体平均性状表现相

表 6 菜心种质材料农艺性状的稳定性分析 Table 6 Stability analysis of germplasm materials

衣艺性状 Agronomic trait	最突出的种质材料 The most prominent material	最不稳定的种质材料 The most unstable materials	最不突出的种质材料 The least prominent material
开展度 Plant expansion	89	42	78
单株质量 Single plant mass	40	29	101
株高 Plant height	77	40	45
最大叶长 Max leaf length	40	43	32
最大叶宽 Max leaf width	89	154	138
最大叶柄长 Max petiole length	89	89	32
叶色 Leaf colour	30	39	77
开花期 Flowering stage	118	3	45

近,并具有一定的稳定性。

2.4 菜心理想种质材料的分析

利用 GGE 双标图中的"理想品种"功能并采用 聚焦品种的特征值分配方法(row metric preserving) 分析 173 份菜心种质中的理想材料,图 3 中带箭头 的过原点的直线为平均环境轴,图中有多个以箭头处为圆心的同心圆,离圆心越近,则表明该种质材料的性状表现越突出并且具有一定的稳定性,可视为理想品种。以箭头处为圆心,以圆心到原点的距离为半径作圆(深色),以该圆的圆周为界,圆形内

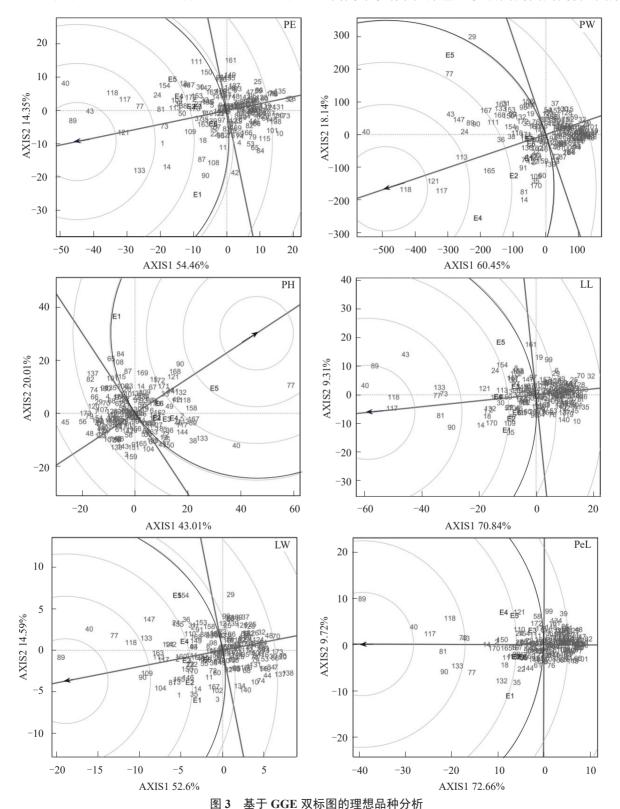


Fig. 3 Analysis of ideal varieties based on GGE biplot

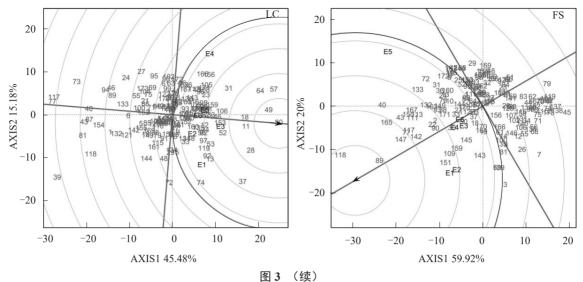


Fig. 3 (Continued)

的种质材料具有相应性状的突出表型,反之位于圆形之外的种质材料表现差于平均值性状。针对菜心的外观品质来说,株型紧凑、尖叶且叶色较深的短薹晚花菜心品种更受市场和消费者青睐,在营养价值高的同时抗逆性也较高,并且也能较好地满足机械化生产的要求^[2,21]。因此需要筛选出开展度小且叶柄短、叶片深绿且长宽比大的矮株晚花品种。

由图 3 可知,筛选出 96 份紧凑株型材料,70 份单株质量高的材料,102 份矮株型材料,17 份尖叶表型的材料,79 份叶色较深的材料,70 份开花期较晚的材料。对上述菜心种质材料进一步筛选,未能筛选出满足所有表型要求的理想材料;除尖叶表型外,52 号种质材料(抗热油青甜)可满足其余表型要求;同时筛出其余 20 份较为理想的种质材料(表 7)。因此,以上材料可以作为理想菜心品种进行培育和推广。

表 7 理想种质材料汇总

Table 7 Summary of ideal germplasm materials

编号 No.	紧凑型 Compact type	单株质量 Single plant mass	矮株 Short plant	尖叶型 Pointed leaf	深绿叶 Dark green leaf	晚花 Late flower
10			$\sqrt{}$		$\sqrt{}$	
30			\checkmark	\checkmark	$\sqrt{}$	\checkmark
33		\checkmark		\checkmark	$\sqrt{}$	\checkmark
43		\checkmark	\checkmark	\checkmark		$\sqrt{}$
52	$\sqrt{}$	$\sqrt{}$	\checkmark		$\sqrt{}$	\checkmark
57		\checkmark		\checkmark	$\sqrt{}$	\checkmark
60		\checkmark	\checkmark		$\sqrt{}$	\checkmark
64	$\sqrt{}$		\checkmark		$\sqrt{}$	\checkmark
67	$\sqrt{}$	\checkmark		\checkmark		\checkmark
76	$\sqrt{}$	\checkmark	\checkmark		$\sqrt{}$	
95	\checkmark	\checkmark	\checkmark			\checkmark
99	\checkmark	\checkmark	\checkmark			\checkmark
112	\checkmark		\checkmark		\checkmark	\checkmark
127	\checkmark	\checkmark	\checkmark		\checkmark	
143	\checkmark		\checkmark		\checkmark	\checkmark
145	\checkmark		\checkmark		\checkmark	\checkmark
148	\checkmark	\checkmark	\checkmark		\checkmark	
159		$\sqrt{}$	\checkmark		\checkmark	\checkmark
160		$\sqrt{}$	\checkmark		\checkmark	\checkmark
165		$\sqrt{}$	\checkmark		\checkmark	\checkmark
171		\checkmark		\checkmark	\checkmark	\checkmark

3 讨论与结论

在菜心的培育和推广过程中,探究基因型与环 境及其互作效应对菜心农艺性状的影响是具有重要 意义的。本研究结果表明,173 份菜心种质材料在 不同环境下的农艺性状表现存在较大差异,变异系 数变化范围在 6.65%~80.42%,平均变异系数大小为 单株质量(60.97%)>最大叶柄长(41.64%)>最大叶 长(28.22%)> 株高(26.95%)>最大叶宽(26.59%)> 开展度(21.52%)>叶色(10.89%)>开花期 (10.24%)。其中,开花期和叶色的变异系数与史卫 东等四的研究结果基本一致,但由于菜心种质材料 的不同以及环境的影响,其他性状的变异系数与前 人的研究结果存在一定的差异,如史卫东等[23]在 2017 年种植的 26 份菜心种质和 2018 年种植的 29 份菜心种质凹的变异系数有较大差别,2017年单株 质量的变异系数为 28.03%, 而 2018 年的变异系数 高达 104.3%。另外,8个农艺性状遗传力的大小分 别为最大叶长(90.12%)>最大叶柄长(89.63%)>最 大叶宽(79.27%)>开展度(79.02%)>开花期 (76.08%)>叶色(73.38%)>单株质量(71.91%)>株高 (52.94%),其中单株质量遗传力与温少波[23]在两亲 本及其101份菜心重组自交系的单株质量遗传力 (73.34%)相近:最大叶长遗传力与烟草[24]和辣椒[25] 的叶长遗传力大小基本一致,分别为90.12%和 91%,另外辣椒的最大叶宽遗传力(76%)也与本试 验比较相近;而开展度的遗传力大小则与陈锦秀 等[26]在结球甘蓝中的研究结果接近(82.06%)。

利用 GGE 双标图对品种的适应性分析可以得 出,在某一环境下一种或几种性状表现良好的品种, 如肖继兵等[11]利用 GGE 双标图在 30 个高粱品种中 筛选出3个具有良好丰产稳产性的品种。另外,适 应性分析还能筛选出在所有试点中都表现不佳的品 种,因此可以根据地区的需要和品种的适应性进行 相应的选择,从而提高经济效益。本研究从173份 菜心材料中筛选到14份在不同试点中表现出良好 适应性的菜心种质材料。在品种稳定性方面,除油 青甜菜心等少数种质材料的性状表现极不稳定外, 其余大部分种质材料的稳定性良好。周丙月等[12]筛 选出了3个高产稳定的马铃薯品种,但本试验选用 的材料群体较多,导致以双标图的形式呈现稳定性 分析结果时,很多种质材料的编号重合在一起难以 辨别,因此大群体的稳定性还是以数据的形式呈现, 其效果会更好。在理想品种方面,筛选出21份较为 理想的种质材料,其中抗热油青甜可满足除尖叶表型外的其他表型要求。没有筛选出能满足所有表型要求的材料,可能是由于种质材料数量有限以及某些性状之间呈负相关,并且部分呈负相关的性状和消费者对这些性状的不同喜好之间的矛盾是影响理想品种分析的重要原因,这种矛盾在毛文博等¹¹⁴的研究中也有所体现。

理想品种不仅需要良好的品质表现,还需要高 稳定性和广适应性。菜心品质可以分为外观形态、 口感风味和功能营养三个方面,本文主要针对与菜 心品质相关的农艺性状来展开研究,对于菜心抗逆 性的分析较少。抗逆性是作物丰产稳产的前提,对 作物的生产安全有重要意义。菜心作为华南地区 的主要蔬菜,除了会遭受高温涝害等非生物胁迫 外,还需要面对病害和虫害等生物胁迫[21]。尽管可 以通过控制温度湿度、喷施农药等方式来降低这些 胁迫带来的影响,但也会带来生产成本提高、农药 残留、害虫抗药性提高等一系列问题。建议从植株 本身出发,筛选培育出抗逆性良好的品种。刘畅[27] 发现,对菜心讲行高温涝渍处理后,其单株质量、开 展度、叶长、叶宽、叶柄长等农艺性状的表现与菜心 的耐热耐涝性呈正相关。另外,除了在正常良好的 环境中对农艺性状进行评价外,还可以在施加一定 的环境胁迫如高温等的环境中利用 GGE 双标图对 农艺性状进行评价,进而筛选出对某种胁迫具有稳 定抗性的品种并得出反映胁迫影响程度的指标性 状[28]。因此,利用多年多点的种植试验来筛选出高 产、广适以及品质优良的菜心材料,为培育和推广 优质菜心品种,扩大菜心的可持续发展是非常有必 要的。

综上所述,173 份菜心种质材料具有明显的表型差异和丰富的性状表现,变异系数变幅在6.65%~80.42%,遗传多样性指数在1.62~2.08。在广义遗传力方面,最大叶长和最大叶柄长的遗传力最高,均在89%以上,因此适合作为推广和选育菜心品种时的主要指标。利用GGE 双标图的不同功能进行分析,发现大部分品种的稳定性良好,并筛选出了14份具有良好适应性的种质材料,同时基于目前主流市场的生产要求和消费需要,确定了21份理想的菜心种质材料,这些种质材料将为推动菜心产业的持续稳定发展提供重要保障。

参考文献

[1] 张帅威,周晓霞,梁雯雯,等.菜心菜薹发育生理研究进展[J]. 中国瓜菜,2023,36(5):8-15.

- [2] 史卫东,罗海玲,康红卫,等.基于主成分分析与聚类分析的菜 心品种评价[J].安徽农业科学,2020,48(24):46-49.
- [3] 黄依琳,许玉富,李荣华,等.菜心群体中 AUF2 基因的遗传变 异及其与农艺性状的关联分析[J].广东农业科学,2023,50 (4):33-41.
- [4] 林宝刚,任韵,柳寒,等.不同生态区对油菜薹营养品质的影响 及摘薹后产量表现[J].核农学报,2020,34(9):2071-2079.
- [5] 岳海旺,韩轩,魏建伟,等.基于 GYT 双标图分析对黄淮海夏 玉米区域试验品种综合评价[J].作物学报,2023,49(5): 1231-1248.
- [6] EBERHART S A, RUSSELL W A. Stability parameters for comparing varieties I[J]. Crop Science, 1966, 6(1): 36-40.
- [7] FINLAY K, WILKINSON G. The analysis of adaptation in a plant-breeding programme[J]. Australian Journal of Agricultural Research, 1963, 14:742-754.
- [8] 温振民,张永科.用高稳系数法估算玉米杂交种高产稳产性的探讨[J].作物学报,1994,20(4):508-512.
- [9] GAUCH H G. Model selection and validation for yield trials with interaction[J]. Biometrics, 1988, 44(3):705-715.
- [10] YAN W K, HUNT L A, SHENG Q L, et al. Cultivar evaluation and mega-environment investigation based on the GGE biplot[J]. Crop Science, 2000, 40(3):597-605.
- [11] 肖继兵,刘志,孔凡信,等.基于 GGE 双标图的高粱品种农艺性状和稳产性分析[J].作物杂志,2023(2):36-45.
- [12] 周丙月,袁剑龙,张玉梅,等.马铃薯品种(系)农艺性状的适应性和稳定性分析[J].核农学报,2023,37(2):274-289.
- [13] ESAN V I, OKE G O, OGUNBODE T O, et al. AMMI and GGE biplot analyses of Bambara groundnut [Vigna subterranea (L.) Verdc.] for agronomic performances under three environmental conditions[J]. Frontiers in Plant Science, 2023, 13: 997429.
- [14] 毛文博,苏成付,毛瑞喜,等.应用 GGE 双标图分析山东省玉 米区域试验品种基因型与环境互作效应[J].山东农业科学, 2020,52(12):7-13.

- [15] 李荣华,郭培国,张华,等.高温胁迫对菜心农艺性状的影响[J]. 长江蔬菜,2011(22):39-43.
- [16] 严少杰. 菜心重要农艺性状与 SSR 分子标记的关联分析[J]. 中国果菜,2021,41(2):34-43.
- [17] 吴超,夏岩石,李荣华,等.烟草青枯病抗性与分子标记的关联 分析[J].烟草科技,2015,48(10):1-12.
- [18] 严威凯.农作物品种试验数据管理与分析[M].北京:中国农业 科学技术出版社,2015.
- [19] FRUTOS E, GALINDO M P, LEIVA V. An interactive biplot implementation in R for modeling genotype-by-environment interaction[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(7):1629-1641.
- [20] YAN W K. Optimal use of biplots in analysis of multi-location-variety test data[J]. Acta Agronomica Sinica, 2010, 36 (11): 1805-1819.
- [21] 陈汉才,吴增祥,林悦欣,等.广东菜心、芥蓝研究现状与展望[J].广东农业科学,2021,48(9):62-71.
- [22] 史卫东,梁劲,张力,等.菜心和芥蓝表型多样性的主成分分析 与聚类分析[J].西南农业学报,2020,33(12):2726-2735.
- [23] 温少波.菜心农艺性状 QTL 位点的检测及其候选基因的分析[D].广州:广州大学,2023.
- [24] 朱列书,戴林建,李国民.烤烟品种主要农艺性状的遗传分析[J].作物研究,2005,19(2):99-101.
- [25] STOMMEL J R, GRIESBACH R J. Inheritance of fruit, foliar, and plant habit attributes in *Capsicum*[J]. Journal of the American Society for Horticultural Science, 2008, 133(3):396-407.
- [26] 陈锦秀,薄天岳,任云英,等.结球甘蓝主要商品性状与农艺性 状的遗传相关分析[J].上海农业学报,2007,23(2):57-60.
- [27] 刘畅.高温涝渍对菜心农艺性状和生理特性影响的研究[D]. 广州:广州大学,2021.
- [28] GUPTA V, MEHTA G, KUMAR S, et al. AMMI and GGE biplot analysis of yield under terminal heat tolerance in wheat[J]. Molecular Biology Reports, 2023, 50(4): 3459-3467.