DOI: 10.16861/j.cnki.zggc.2024.0259

土壤改良剂对盐碱地土壤质量与辣椒生长的影响

张俊峰1,牛成达2,甘润2,于海利3,侯作鹏4

(1.甘肃省农业科学院蔬菜研究所 兰州 730070; 2.金昌市农艺研究院 甘肃金昌 737100; 3.武威市农业科学研究院 甘肃武威 733000; 4.永昌县农业综合行政执法队 甘肃永昌 737100)

摘 要: 为探究不同土壤改良剂对膜下滴灌加工辣椒生长指标和土壤特性的影响,设 T1(对照,当地常规栽培)、T2(有机肥 400 kg·667 m²)、T3(腐殖酸 8.5 kg·667 m²)、T4(土壤调理剂 10 kg·667 m²)、T5(乳糖肽 5 kg·667 m²)5 个处理,通过测定土壤理化性状、辣椒生长指标,筛选出适宜加工辣椒生长的抗盐碱栽培模式。结果表明,与对照相比,添加有机肥、腐殖酸、土壤调理剂、乳糖肽均可不同程度地提高土壤有机碳、碱解氮、速效磷和速效钾含量,促进加工辣椒生长,其中土壤调理剂处理的综合效果最优,产量较对照显著提高 41.71%。冗余分析(RDA)结果表明,土壤肥力可以解释 85.88%的辣椒生长性状变异,进一步通过蒙特卡洛检验的结果表明,土壤有机碳(SOC)含量和 pH 是加工辣椒生长的主要影响因子。综上,土壤调理剂处理可作为该地区加工辣椒抗盐碱栽培的有效技术方案。

关键词:辣椒;盐碱地改良;土壤肥力;生长性状;产量

中图分类号:S641.3

文献标志码:A

文章编号:1673-2871(2025)10-156-07

Effects of soil amendments on soil quality and pepper growth in saline-alkali soil

ZHANG Junfeng¹, NIU Chengda², GAN Run², YU Haili³, HOU Zuopeng⁴

(1. Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China; 2. Jinchang Institute of Agronomy, Jinchang 737100, Gansu, China; 3. Wuwei Academy of Agricultural Sciences, Wuwei 733000, Gansu, China; 4. Agricultural Comprehensive Administrative Law Enforcement Team of Yongchang County, Yongchang 737100, Gansu, China)

Abstract: To investigate the effects of different soil amendments on soil properties and growth indices of processing pepper under mulch drip irrigation, five treatments were established: T1 (control, local routime managment), T2 (organic fertilizer 400 kg·667 m⁻²), T3 (humic acid 8.5 kg·667 m⁻²), T4 (soil conditioner 10 kg·667 m⁻²) and T5 (lactose peptide 5 kg·667 m⁻²). By evaluating soil physicochemical properties and pepper growth indicators, cultivation treatments suitable for the growth of processing pepper in saline-alkali soils were identified. The results demonstrated that the application of organic fertilizer, humic acid, soil conditioner, and lacto-peptide all significantly increased the content of soil organic carbon, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium and promoted the growth of processing pepper compared to the control, and the comprehensive effect of lactose peptide treatment was the best. The results of RDA analysis showed that soil fertility could explain 85.88% of the variation of pepper growth traits. Further, the results of Monte Carlo test showed that soil SOC content and pH were the main factors affecting the growth of processed pepper. In summary, lactose peptide treatment can be used as an effective technical solution for processing pepper saline-alkali resistance cultivation.

Key words: Pepper; Saline-alkali soil improvement; Soil fertility; Growth trait; Yield

土壤盐碱化是全世界面临的共同问题,据统计,全世界盐碱土壤面积达到了9.54×10⁸ hm²,而我国的盐碱土面积达到了9.91×10⁷ hm^{2[1-3]}。土壤盐碱

化极大地限制了我国农业可持续生产,因此盐碱地 的改良一直是国内外学者研究的热点[45]。盐碱土 通常采用物理方法(覆土和土方管理)、生物方法

收稿日期:2024-04-16;修回日期:2025-06-07

基金项目: 甘肃省农业科学院重点研发计划项目(2025GAAS23); 金昌市"人才工作平台阵地建设+农业科学技术攻关"模式下人才培养的探索与研究; 甘肃省科学技术创新引导计划项目(22CX8NA029); 武威市市级科技重点研发计划项目(WW2201YFN005)

作者简介: 张俊峰, 男, 副研究员, 主要从事蔬菜栽培研究与示范推广工作。 E-mail: gansuzif@163.com

通信作者: 牛成达, 男, 正高级农艺师, 主要从事作物育种与中药材栽培研究。E-mail: 120224626@qq.com

(植物修复和微生物修复)和化学方法(施用有机肥、腐殖酸、生物质炭和调理剂等)进行改良^[3,6]。但物理与生物方法常受到人工、时间和气候等条件的限制,因此,化学方法成为目前改良盐碱土最有效的措施。

辣椒(Capsicum annuum L.)属于茄科辣椒属,广泛种植于我国西北地区[^{7-8]}。覆膜栽培作为西北蔬菜产区重要的栽培管理方式,不仅能提高菜田土壤水分利用效率,增加地温,而且能显著提高作物产量^[9]。但覆膜栽培在调控水分移动的同时,不可避免地会影响到矿物盐分的运移,导致根层土壤盐分富集,加剧盐碱化程度。目前,针对覆膜栽培的研究主要集中在玉米^[10]、小麦^[11]、马铃薯^[12]等大田作物上,而有关蔬菜作物的研究相对较少。

金昌市永昌县位于河西走廊东部的石羊河流域,属大陆性温带干旱气候,年均降水量较少,但蒸发量较大,因此较大面积的土壤多为盐碱土壤[13]。 永昌县是甘肃著名的农业县,近年来高原夏菜成为 县区重要的产业支柱,但大面积膜下滴灌使地下盐分移动较为活跃,发生盐碱化危害的程度进一步加大。鉴于此,笔者以盐碱地种植的辣椒为对象,研究施用有机肥、腐殖酸、土壤调理剂和乳糖肽对膜下滴灌情况下土壤理化性状和辣椒生长指标的影响,以期为加工辣椒抗盐碱栽培提供理论依据和技术支撑。

1 材料与方法

1.1 试验地概况

试验于 2023 年在甘肃省农业科学院蔬菜研究 所永昌试验站进行。试验地海拔 1996 m,属温带 大陆性干旱气候区,年平均气温 4.8 ℃,夏秋季节 平均气温 20 ℃,多年平均降水量 185.1 mm,降水 年内分布不均,主要集中于 6-9 月,年蒸发量 2 000.6 mm,≥10 ℃的年积温 2011 ℃,无霜期 134 d, 区域光照充沛,气候冷凉,昼夜温差大,是甘肃省高原 夏菜的优势生产区。试验地基础理化性质如表 1 所示。

表 1 试验地土壤基本理化性质

Table 1 Basic physical and chemical properties of tested soil

指标 Index	w(有机质) Organic matter content/(g·kg ⁻¹)	w(全氮) Total N content/ (g·kg ⁻¹)	w(全磷) Total P content/ (g·kg ⁻¹)	w(全钾) Total K content/ (g·kg ⁻¹)	w(速效磷) Available P content/ (mg·kg¹)	w(速效钾) Available K content/ (mg·kg ⁻¹)	w(碱解氮) Alkali hydrolyzale N content/ (mg·kg ⁻¹)	w(全盐) Total salt content/ (mg·kg¹)
数值 Value	12.81	0.14	3.49	18.61	65.31	27.87	22.34	2.43

1.2 材料

供试辣椒品种德源 13 号由甘肃德源农业科技有限责任公司选育,属于板椒类型。

供试肥料包括平衡型复合肥(N-P₂O₅-K₂O=15-15-15,施可丰化工股份有限公司生产)、高钾型复合肥(N-P₂O₅-K₂O=16-8-32,韩国福阿母韩农公司生产)、生物有机肥[有机质含量(w,后同) \geq 40%,有效活菌数(cfu) \geq 0.2 亿•g¹,甘肃绿能瑞奇生物技术有限公司生产]、腐殖酸[腐殖酸含量(ρ ,下同) \geq 30 g·L¹,(N+P₂O₅+K₂O)含量 \geq 200 g·L¹,甘肃永泰生物科技有限责任公司生产];土壤调理剂(S含量 \geq 90%,青岛斯蒂文农业科技有限公司生产)、乳糖肽[(N+P₂O₅+K₂O)含量 \geq 80 g·L¹,有机质含量 200 g·L¹,氨基酸含量 100 g·L¹,诸城市浩辰生物科技有限公司生产]。

1.3 试验设计

试验共设置 5 个处理,包括 T1:对照(当地常规栽培);T2:生物有机肥(400 kg·667 m²);T3:腐殖酸(8.5 kg·667 m²);T4:土壤调理剂(10 kg·667 m²);

T5:乳糖肽(5 kg·667 m²)。每个处理设3次重复,共15个小区,每小区面积105 m²,随机区组排列,于5月2日定植,株距30 cm。定植前基肥施入平衡型复合肥40 kg·667 m²,生物有机肥(T2)和土壤调理剂(T4)随基肥一次性施入;腐殖酸(T3)和乳糖肽(T5)分两次施入,定植时随水滴入30%,定植1个月后随水滴入70%,整个生育期内其余生产管理同常规。

1.4 测定项目与方法

1.4.1 土壤理化性状 辣椒采摘后在每个小区采用五点法采集 0~30 cm 土壤样品,将其混匀挑出动植物残体后带回实验室风干,过 2 mm 筛备用。采用电位法测定(水土质量比 2.5:1)土壤 pH,采用电导仪法测定土壤电导率(EC),采用环刀烘干称重法测定土壤容重,采用重铬酸钾-浓硫酸外加热法测定土壤有机碳(SOC)含量,采用碱解扩散法测定土壤碱解氮(AN)含量,采用 NHCO3 浸提-钼锑抗比色法测定土壤速效磷(AP)含量,采用 NH4OAC 浸提-火焰光度法测定土壤速效钾

(AK)含量[14]。

1.4.2 植株生长指标 在盛果期采用卷尺测定株 高和株幅,采用游标卡尺测定茎粗、果长、果肩宽 和果肉厚,采用电子天平称单果质量,统计单株 结果数等指标,明确不同处理对植株形态指标的 影响。

1.4.3 产量 采收各处理小区的单株产量和小区产量并折合 667 m²产量,确定不同处理对产量的影响(采收小区面积为 105 m²)。按照采收时期辣椒价格 2.4 元•kg¹计算产值。

1.5 数据分析

采用 Excel 2016 软件对数据进行整理,利用 SPSS 25.0 对土壤理化指标和辣椒生长性状进行单 因素方差分析(Anova),采用多重比较法(Duncan)进行处理间差异显著性检验,采用 Origin 2021(Correlation Plot 插件)绘制相关性热图,采用 Canoco 5 软件(https://www.canoco5.com/)对辣椒生长性状和土壤肥力指标进行冗余分析(RDA),并用 R 程序包 "randomForest"评估土壤肥力因子对辣椒产量的相对重要性。

2 结果与分析

2.1 施用土壤改良剂对土壤肥力的影响

由表 2 可知,不同处理的土壤 pH 均呈碱性,且 T2 和 T4 处理显著高于 T1 处理(对照), 而 T5 处理 显著低于 T1 处理。各施用土壤改良剂处理的土壤 电导率(EC)均显著低于 T1 处理,其中 T5 处理最 低,为 0.281 0 mS·cm⁻¹,较 T1 处理显著降低了 26.77%。T2、T3 和 T4 处理的土壤容重较 T1 处理 有所降低,T5 处理的土壤容重较 T1 处理有所升高, 但各处理间差异均不显著。与对照相比,不同土壤改 良剂处理均显著提高土壤有机碳(SOC)、碱解氮 (AN)、速效磷(AP)和速效钾(AK)含量。施用土壤 调理剂(T4)处理的 SOC 含量最高,为 8.20 g·kg-1; 施用乳糖肽(T5)处理的 AN、AP 和 AK 含量均最 高,分别为 94.88、74.61 和 200.04 mg·kg⁻¹。 T2、T3、 T4 和 T5 处理较 T1 处理的 SOC 含量分别显著提 高 14.87%、16.74%、28.33%和 25.67%; AN 含量分 别显著提高 44.51%、43.75%、59.32%和 72.38%; AP 含量分别显著提高 21.93%、36.29%、39.30%和

表 2 不同处理对土壤理化性状的影响

Table 2 Effects of different soil amendments on soil physical and chemical properties

处理 Treatment	рН	电导率 EC/(mS·cm ⁻¹)	容重 BD/(g·cm ⁻³)	w(土壤有机碳) SOC content/ (g·kg¹)	w(碱解氮) AN content/ (mg·kg ⁻¹)	w(速效磷) AP content/ (mg·kg·¹)	w(速效钾) AK content/ (mg·kg ⁻¹)
T1(CK)	8.21±0.02 c	0.383 7±0.003 5 a	1.12±0.03 a	6.39±0.06 d	55.04±2.73 d	50.43±2.74 d	158.10±11.00 d
T2	8.32±0.02 b	0.325 7±0.004 1 b	$1.04{\pm}0.03$ a	7.34±0.06 c	79.54±3.48 c	61.49±1.45 c	176.81±3.22 c
T3	$8.19\pm0.01~{\rm c}$	$0.314\ 3{\pm}0.004\ 0\ c$	$1.05\pm0.04~a$	7.46±0.06 c	79.12±2.64 c	68.73±1.65 b	183.39±7.23 bc
T4	$8.43{\pm}0.04$ a	0.298 3±0.009 0 d	$1.10\pm0.01~a$	8.20 ± 0.09 a	87.69±2.36 b	$70.25 \pm 10.00 \ ab$	193.07±4.13 ab
T5	$8.02\pm0.03~{ m d}$	0.281 0±0.008 0 e	$1.32\pm0.55~a$	$8.03{\pm}0.06~b$	94.88 ± 2.40 a	74.61±3.92 a	200.04±2.58 a

注:同列不同小写字母表示处理间差异显著(P<0.05)。下同。

Note: Different lowercase letters in the same column indicate significant difference among treatments (P < 0.05). The same below.

47.95%; AK 含量分别显著提高 11.83%、16.00%、22.12%和 26.53%。

2.2 施用土壤改良剂对辣椒生长性状的影响

由表 3 可知,与对照相比,添加生物有机肥、腐殖酸、土壤调理剂和乳糖肽均能显著改变辣椒生长性状。 T4 处理的株幅(79.33 cm)、果肉厚(2.68 mm)、单果质量(34.57 g)、单株果数(25.33 个)和单株果质量(0.62 kg)均最高,T5 处理的株高(75.33 cm)、茎粗(19.14 mm)、果长(7.36 cm)和果肩宽(3.53 cm)最大。相较于T1处理,T2、T3、T4和T5处理株高分别显著提高12.33%、10.67%、13.53%和17.15%,但施用改良剂各处理间差异不显著;株

幅分别显著增加 37.43%、16.45%、66.45%和 34.50%; 茎粗分别增加 3.37%、16.00%、29.15%和 65.57%, 其中 T3、T4 和 T5 处理显著高于 T1 处理; 果肉厚和单果质量分别提升 17.53%、22.27%、27.01%、21.80%和 0.06%、6.18%、15.54%、6.25%; T4 和 T5 处理的果长显著大于 T1 处理,而 T2 和 T3 处理与 T1 处理无显著差异;而添加不同土壤改良剂均不会改变果肩宽; T4 处理的单株果数较 T1、T2、T3 和 T5 处理分别显著提高 72.78%、55.11%、85.43%和 49.00%; 在单株果质量方面, T4 处理显著高于其他处理,较 T1 处理显著提高了 15.54%,T1、T2、T3 和 T5 处理间差异不显著。

	表 3	不同土	ニ壤改	良剂对药	椒生长	指标的影响	
 •	T 00						

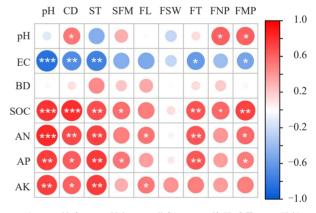
Table 3	Effects of different soil	amendments on	growth index of pepper
---------	---------------------------	---------------	------------------------

处理 Treatment	株高 Plant height/ cm	株幅 Crown diameter/cm	茎粗 Stem thickness/mm	果长 Fruit length/cm	果肩宽 Fruit shoulder width/cm	果肉厚 Flesh thickness/ mm	单果质量 Single fruit mass/g	单株果数 Fruits number per plant	单株果质量 Fruit mass per plant/g
T1(CK)	64.30±2.46 b	47.66±4.16 d	11.56±0.50 с	6.16±0.35 bc	3.40±0.45 a	2.11±0.04 b	0.37±0.03 c	14.66±1.15 b	29.92±1.95 b
T2	72.23±3.65 a	65.50±1.32 b	11.95±1.20 c	6.76±0.32 ab	3.30±0.10 a	2.48±0.09 ab	$0.48{\pm}0.05~b$	16.33±1.15 b	29.94±2.31 b
T3	71.16±1.60 a	55.50±3.77 c	13.41±0.92 bc	5.63±0.28 c	3.43±0.15 a	2.58±0.45 ab	$0.44{\pm}0.03~bc$	13.66±2.08 b	$31.77 \pm 0.98 \ ab$
T4	73.00±0.86 a	79.33±4.04 a	14.93±1.38 b	7.03±0.47 a	3.43±0.20 a	2.68±0.10 a	$0.62\pm0.05~a$	25.33±3.05 a	34.57±3.09 a
T5	75.33±4.16 a	64.33±3.21 b	19.14±1.01 a	7.36±0.49 a	3.53±0.15 a	2.57±0.26 ab	0.45±0.02 bc	17.00±2.64 b	31.79±1.42 ab

表 4 不同土壤改良剂对辣椒产量的影响

Table 4 Effects of different soil amendments on pepper yield

处理 Treatment	小区产量 Plot yield/kg	产量 Yield/(kg·667 m ⁻²)	比 CK+ More than CK+/ (kg·667 m ⁻²)	产值 Output value/(Yuan·667 m ⁻²)	增加产值 Increase output value/(Yuan·667 m ⁻²)
T1(CK)	396.15±12.44 d	2 516.49±79.04 d		6 039.59	
T2	443.57±17.48 c	2 817.72±111.04 c	301.23	6 762.54	722.95
T3	435.91±14.78 c	2 769.08±93.89 c	252.59	6 645.81	606.22
T4	561.38±17.10 a	3 566.09 \pm 108.63 a	1 049.60	8 558.64	2 519.05
T5	516.39±28.57 b	3 280.32±181.51 b	763.83	7 872.79	1 833.20


2.3 施用土壤改良剂对产量的影响

与对照相比,施用生物有机肥、腐殖酸、土壤调理剂和乳糖肽均能显著提高辣椒产量,从而增加辣椒产值(表 4)。 T4 处理的产量最高,达到3 566.09 kg·667 m²,较 T1 处理显著增产1 049.60 kg·667 m²,产值8558.64 元•667 m²,较 T1 处理增加产值2519.05 元•667 m²; T5 处理次之,产量3280.32 kg·667 m²,较 T1 处理显著增产763.83 kg·667 m²,产值7872.79 元•667 m²,较 T1 处理增加产值1833.20 元•667 m²。同时 T2、T3 处理的产量和产值也均高于对照 T1。

2.4 施用土壤改良剂的土壤肥力与辣椒生长性状相关性分析

对各处理土壤肥力与辣椒生长性状进行相关性分析,由图 1 可知,辣椒株高、茎粗与 EC 呈极显著负相关,与 SOC、AN、AP 和 AK 呈极显著正相关;株幅与 pH、SOC、AN、AP 和 AK 呈显著或极显著正相关,与 EC 呈极显著负相关;单果质量与SOC 和 AP 呈显著正相关;果长与 AN 和 AK 呈显著正相关;果肉厚与 EC 呈显著负相关,与 SOC、AN和 AP 呈极显著正相关;单株果数与 pH 和 SOC 呈显著正相关;单株果质量与 pH、SOC、AN和 AP 呈显著或极显著正相关,与 EC 呈显著负相关。

对各处理土壤肥力与辣椒生长性状进行 RDA 分析(图 2),结果表明,第 1 轴(RDA1)和第 2 轴

注:PH. 株高;CD. 株幅;ST. 茎粗;SFM. 单果质量;FL. 果长;FSW. 果肩宽;FT. 果肉厚;FNP. 单株果数;FMP. 单株果质量。*表示在 0.05 水平显著相关;***表示在 0.01 水平极显著相关;***表示在 0.001 水平极显著相关。下同。

Note: PH represents plant height; CD represents crown diameter; ST represents stem thickness; SFM represents single fruit mass; FL represents fruit length; FSW represents fruit shoulder width; FT represents flesh thickness; FNP represents fruit number per plant; FMP represents fruit mass per plant. * represents significant correlation at 0.01 level; ** represents extremely significant correlation at 0.01 level; ** represents extremely significant correlation at 0.001 level. The same below.

图 1 土壤肥力指标与辣椒生长性状指标的相关性分析 Fig. 1 Correlation analysis of different indexes between soil fertility and pepper growth trait

(RDA2)分别解释了 78.25%和 7.63%的样本变异, 累计解释变量为 85.88%。进一步通过蒙特卡洛检

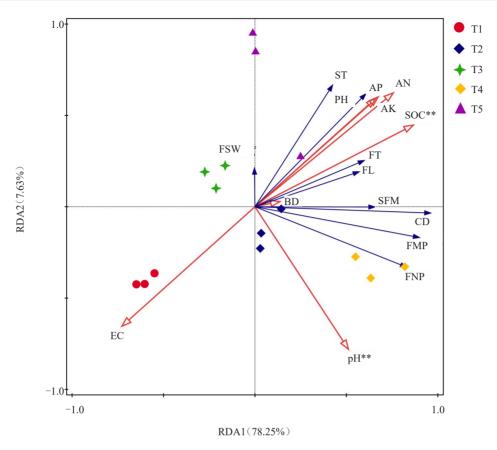
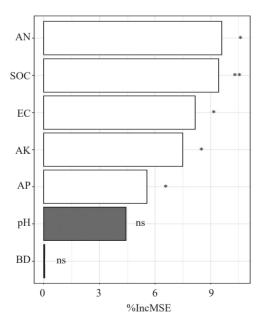



图 2 土壤肥力指标与辣椒生长性状指标的冗余分析

Fig. 2 Redundancy analysis of soil fertility index and pepper growth trait index

注:*表示在 0.05 水平影响显著;**表示在 0.01 水平影响极显著;ns 表示影响不显著。

Note: * represents significant influence at 0.05 level; ** represent extremely significant influence at 0.01 level; ns represents no significant influence.

图 3 土壤肥力指标与辣椒产量的随机森林分析 Fig. 3 Random forest analysis of soil fertility index and pepper yield

验的结果表明,SOC(P=0.002)和土壤 pH(P=0.002) 是影响辣椒生长性状的主要影响因子。

2.5 施用土壤改良剂的土壤肥力对辣椒产量的影响因素分析

采用随机森林模型预测影响辣椒产量最重要的土壤肥力因子(图 3),结果表明,AN(%IncMSE=9.60)、SOC(%IncMSE=9.42)、EC(%IncMSE=8.16)、AK(%IncMSE=7.49)和 AP(%IncMSE=5.57)均对辣椒产量有显著影响。

3 讨论与结论

土壤理化性质是土壤肥力的核心,是土壤综合肥力的体现[15-16]。本研究结果表明,与对照相比,施用有机肥、腐殖酸、土壤调理剂和乳糖肽均对土壤理化性质产生不同程度的影响。在施用有机肥后,土壤pH及有机碳、碱解氮、速效磷和速效钾含量等均有所上升,与席凯鹏等[17]的研究结果相符,可能是有机肥施入土壤后,通过微生物和作物的共同作用将有机肥中的物质元素释放到土壤中[18]。研究表明,腐殖酸被植物吸收后能够有效刺激植株生长,并增强抗盐碱、抗干旱等抗逆境胁迫能力[19]。在本

研究中,与对照相比,施用腐殖酸显著提高了土壤 有机碳、碱解氮、速效磷和速效钾含量,降低了土壤 pH 和电导率,这可能是因为腐殖酸是有机胶体物 质,可以固定土壤中的金属离子,通过氨化反应、解 磷作用等提高氮磷钾等养分元素的含量,同时降低 了土壤 pH,为微生物提供适宜的生活环境,从而提 高微生物活性,促进有机质的降解,提高了土壤 SOC 含量[19-20]。土壤调理剂可以改善土壤的物理、 化学和生物特性,培育健康的土壤环境[21]。相关研 究表明,施用土壤调理剂可以提高土壤速效养分和 有机质含量[22-23]。本试验结果与前人的研究结果基 本一致,与对照相比,施用土壤调理剂显著提高了 土壤 pH 及有机碳、碱解氮、速效磷和速效钾含量, 显著降低了电导率,这可能是土壤调理剂施入土壤 后,与土壤中的金属离子结合,同时改变土壤环境, 促进腐殖质的生成,增加激发效应,提高了土壤中 养分的有效性[24]。乳糖酶是水解乳糖产生的小分子 多肽,在植物生长和发育中发挥着促进作用。在本 研究中,与对照相比,乳糖肽施用后提高了土壤有 机碳、碱解氮、速效磷和速效钾含量,降低了土壤 pH 和电导率,这可能是乳糖肽促进了作物根系生 长,进一步增加了根系分泌物和根际沉积碳,从而 提高了土壤微生物活性以及土壤养分有效性[25-27]。

土壤改良剂能够显著改变土壤理化性质,从而 对作物的生长性状产生一定的影响[28]。韩飞等[29]在 滨海盐碱地进行的研究中发现,施用有机肥对谷子 的茎粗、叶面积、穗长和穗粗均有显著提升。研究 表明,施用腐殖酸可以提高油菜鲜质量和干质量, 对油菜叶数也有一定影响,同时不同含量的腐殖酸 对作物的生长调节具有显著差异[30]。涂智勇[31]的研 究表明,土壤调节剂的施用对生菜株高、茎粗、展开 度、产量和干物质含量等具有一定的影响。本研究 结果表明,与对照相比,4种土壤改良剂均显著改变 辣椒的生长性状和产量,其中4个处理的株高和株 幅均显著增加,T4和T5处理的茎粗和果长显著增 加,T4 处理的果肉厚、单果质量、单株果数和单株果 质量也显著增加。其原因可能是,4种改良剂均对 土壤养分具有一定的活化和激发效应,提高了土壤 中的速效养分和有机碳含量,而土壤调理剂作为一 种小分子物质,可以更好地与盐碱土壤中的离子结 合,缓解盐碱胁迫,为作物和土壤微生物的生长创 造更好的环境条件[32-34]。

在干旱、半干旱地区,土壤盐渍化极大地影响了农业生产[35-36]。利用土壤改良剂是改善土壤肥

力、减少盐碱地产量损失、促进农业可持续生产的 有效途径。相关性分析结果表明,土壤肥力与辣椒 的生长指标具有较强的相关性。进一步进行的 RDA 分析结果表明,土壤肥力对辣椒生长性状的解 释度达 85.88%。土壤肥力对辣椒产量的随机森林 分析结果表明,AN、SOC、EC、AK 和 AP 均对辣椒 产量具有显著影响。这些影响可能是土壤改良剂 的施用改变了土壤 pH、EC 及 SOC、AN、AP 和 AK 含量,使土壤环境得到改善,出现更多的生态位,也 为作物生长和微生物提供了更多的碳源,同时也可 能增加有益微生物群落丰度,从而提高作物对盐碱 胁迫的耐受性,促进植株生长[37]。有机肥中含有较 多的有机质,外源有机质添加可以极大地增强激发 效应,加速有机质分解,使更多的养分得到释 放[38-39]。而腐殖酸是一种有机胶体,对盐碱土壤中 的阳离子具有较强的吸附和交换能力,可以缓解盐 碱胁迫,释放土壤养分,与化学肥料配合施用可以 达到更好的效果[32,35]。土壤调理剂的施用改变了土 壤理化性状,促进了土壤养分的释放。乳糖肽作为 一种水解的小分子物质,对土壤中的离子也具有一 定的吸附作用,同时也易于被植物与微生物吸收利 用,从而增强植物抗逆境胁迫的能力,促进作物根 系的生长发育,进而增强作物根系与土壤的互作能 力,提高土壤养分含量,促进作物生长[40-41]。本研究 是在河西走廊中段盐碱土壤中进行的,4种改良剂 均显著提高了辣椒产量,可能与改良剂对土壤理化 性状的改良促进了辣椒植株的生长有关。

综上所述,与对照相比,有机肥、腐殖酸、土壤 调理剂和乳糖肽均对土壤肥力和辣椒生长性状产 生显著影响。土壤电导率及碱解氮、有机碳、速效 钾和速效磷含量均是影响辣椒产量的关键因子。 综合来看,土壤调理剂对改良盐碱土壤及提高作物 产量的效果最好,乳糖肽次之,可作为该地区加工 辣椒抗盐碱栽培的有效技术方案。

参考文献

- [1] 冯玉倩,米俊珍,赵宝平,等.秸秆配施微生物菌肥对盐碱地土壤及作物盐分含量的影响[J].华北农学报,2023,38(6):
- [2] 孙盛楠,严学兵,尹飞虎.我国沿海滩涂盐碱地改良与综合利用现状与展望[J].中国草地学报,2024,46(2):1-13.
- [3] XU X, GUO L, WANG S B, et al. Effective strategies for reclamation of saline-alkali soil and response mechanisms of the soil-plant system[J]. Science of the Total Environment, 2023, 905:167179.

- [4] LI W H, WANG Z H, ZHANG J Z, et al. Soil salinity variations and cotton growth under long term mulched drip irrigation in saline alkali land of arid oasis[J]. Irrigation Science, 2022, 40 (1):103-113.
- [5] 赵维彬,王松,刘玲玲,等.生物炭改良盐碱地效果及其对植物 生长的影响研究进展[J].土壤通报,2024,55(2):551-561.
- [6] WANG X, DU L, WANG W X, et al. Functional identification of *ZDS* gene in apple (*Malus halliana*) and demonstration of it's role in improving saline alkali stress tolerance[J]. Physiology and Molecular Biology of Plants, 2023, 29(6):799-813.
- [7] 廖广丞,陈晓萍,余烨颖,等.磷肥减量与有机替代对露地辣椒产量品质及土壤肥力的影响[J].农业环境科学学报,2023,43 (3):617-626.
- [8] 张丹,陈锐,韩爱玲,等.辣椒新品种"优美 518"的选育[J].北方园艺,2024(10):156-160.
- [9] 葛仲显,卢晶,宋展树.不同覆膜栽培方式下施氮量对春玉米 干物质积累及产量形成的影响[J].甘肃农业大学学报,2023, 58(3):57-66.
- [10] 高应平,郑炳辉,梁天柱,等.不同覆膜形式对旱地玉米-拉巴豆间作栽培饲料产量及青贮品质的影响[J].中国饲料,2023 (4):78-83.
- [11] 罗来超,王朝辉,惠晓丽,等.覆膜栽培对旱地小麦籽粒产量及 硫含量的影响[J].作物学报,2018,44(6):886-896.
- [12] 李浩然,曹君迈,陈彦云.不同覆膜栽培方式对雨养区马铃薯 光合日变化及产量的影响[J].江苏农业科学,2018,46(15):
- [13] 郝嘉楠,常跟应,张雪,等.石羊河流域治理前后农业绿色发展水平评价[J]. 兰州大学学报(自然科学版),2021,57(1): 109-116.
- [14] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
- [15] 裴瑞杰,王俊忠,冀建华,等.腐殖酸肥料与氮肥配施对土壤理 化性质的影响[J].江苏农业科学,2018,46(19):331-334.
- [16] 刘慧军,刘景辉,于健,等.土壤改良剂对燕麦土壤理化性状及 微生物量碳的影响[J].水土保持学报,2012,26(5):68-72.
- [17] 席凯鹏,杨苏龙,席吉龙,等.长期棉花秸秆配施有机肥对土壤 理化性质及棉花产量的影响[J].中国土壤与肥料,2022(7): 82-90.
- [18] 李军营,邓小鹏,杨坤,等.施用有机肥对植烟土壤理化性质的 影响[J].中国土壤与肥料,2012(3):12-16.
- [19] 陈星星,刘新社,王盛荣.腐殖酸对盐胁迫下土壤理化性质、微环境及苦瓜生长的影响[J]. 江苏农业科学,2023,51(17):138-144.
- [20] REN HY, ISLAM MS, WANG HY, et al. Effect of humic acid on soil physical and chemical properties, microbial community structure, and metabolites of decline diseased bayberry[J]. International Journal of Molecular Sciences, 2022, 23(23):14707.
- [21] ZIBILSKE L. Handbook of soil conditioners: Substances that enhance the physical properties of soil[J]. Soil Science, 1998, 163(12):982-983.
- [22] 韦婉羚,罗兴录,李亮,等.土壤调理剂不同用量对木薯产量和 土壤理化性状的影响[J].南方农业学报,2017,48(4):623-627.
- [23] 魏莎,李素艳,孙向阳,等.土壤调理剂对连作切花菊品质和土

- 壤性质的影响[J].中国农学通报,2010,26(20):206-211.
- [24] 朱慧,何颖悦.不同土壤调理剂配施对连作番茄土壤特性和产量与果实品质的影响[J].中国瓜菜,2023,36(5):104-108.
- [25] 王晓娇.不同施肥措施下陇中黄土高原旱作玉米农田生态系统碳平衡及其土壤碳库稳定性研究[D]. 兰州:甘肃农业大学, 2021.
- [26] 龙吉兰,蒋铮,刘定琴,等.干旱下植物根系分泌物及其介导的根际激发效应研究进展[J].植物生态学报,2024,48(7):817-827.
- [27] VIVES-PERIS V, DE OLLAS C, GÓMEZ-CADENAS A, et al. Root exudates: From plant to rhizosphere and beyond[J]. Plant Cell Reports. 2020, 39(1):3-17.
- [28] 李赟,刘迪,范如芹,等.土壤改良剂的研究进展[J].江苏农业科学,2020,48(10):63-69.
- [29] 韩飞,何伟,张行,等.不同施肥模式对盐碱地土壤改良及谷子 生长的影响[J].土壤通报,2020,51(4):860-865.
- [30] 高纪超,石元亮,魏占波,等.腐殖酸与硝化抑制剂配施对油菜 生长及品质的影响[J].中国土壤与肥料,2021(4):218-223.
- [31] 涂智勇.不同土壤调理剂对设施生菜生长发育及水分利用效率影响试验研究[D].河北保定:河北农业大学,2022.
- [32] MOUS A A. Effect of using some soil conditioners on salt affected soil properties and its productivity at El-Tina Plain area-North Sinai Egypt[J]. Egyptian Journal of Soil Science, 2017, 57(1):101-111.
- [33] ÖZTÜRK H S, TÜRKMEN C, ERDOGAN E, et al. Effects of a soil conditioner on some physical and biological features of soils: results from a greenhouse study[J]. Bioresource Technology, 2005, 96(17):1950-1954.
- [34] YU X Q, ZHANG Y Z, SHEN M C, et al. Soil conditioner affects tobacco rhizosphere soil microecology[J]. Microbial Ecology, 2023, 86(1):460-473.
- [35] WANG Y Q, GAO M, CHEN H T, et al. Organic Amendments promote saline- alkali soil desalinization and enhance maize growth[J]. Frontiers in Plant Science, 2023, 14:1177209.
- [36] 李明,马飞,张俊华.种稻年限对盐渍化土壤理化性质和细菌 群落多样性的影响[J].干旱地区农业研究,2021,39(4): 194-202.
- [37] ZHANG Z K, LIU H, LIU X X, et al. Organic fertilizer enhances rice growth in severe saline alkali soil by increasing soil bacterial diversity[J]. Soil Use and Management, 2022, 38(1): 964-977.
- [38] 何苏南,陈环宇,郁凯,等.有机无机肥配施对江苏滨海盐碱土农田生产力和碳库的影响[J].南京农业大学学报,2024,47 (2):274-283.
- [39] 高媛.长期定位施肥对旱作农田土壤有机碳激发效应及碳循环功能基因的影响[D].西安:西北大学,2022.
- [40] 李雨泽.沟垄覆膜对旱作玉米根系生长和根系相关微生物的 影响[D].陕西杨凌:西北农林科技大学,2023.
- [41] 侯钰晨,庞春花,张永清,等.施用生物炭与氮肥对盐碱胁迫下 藜麦幼苗生理生长特性的影响[J].作物杂志,2024(4): 240-246.