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LB SERN R B3 5L 2 b B A s2 e & Wb B A B E B S5 VEIRT 7T T I 430064 ;
2. FEN RN AR L WIEEEX 438000; 3. I ZENFNERH AR AT I 430070)

8 E:p-UEHEE (BAM) FKIEEE N 12 A7 T 2 b, fE L AR a5 7 T R B ZE R . N
BE— B4R H BAM S5 A S B AR 70 o p L3I 5 S BE R Th B, 1 A= P15 1225 BOW BB CaBAM BE A
FIGHAT AL R % 0, FEXTFE N S5 RGBS AT /b . 25 SRR, BRI 10 4 CaBAM A,
BINSRKTEER A, o A A0 AAZ A0 R R SRR R . RER B T CaBAM BRI XI5y R 6 4
2, AL FREE Glu-186 F Glu-380 1) £% 5 £ % T Flexible loop 1 Inner loop. CaBAM K 5z T X &H 2 A~ Hi
iR B SAR I AR F oo, B s R ZEAR IR W38 R 1 QRT-PCR S6E 356 43 BT 3 B, CaBAM JE [RI{E AN R 4121
FEEA G FAEAE 2 K3k, CaBAMA4 . CaBAMS F1 CaBAMG6 T B8 7E B K & & Mol i i vh R AEAE o BT 9T
S5 O — RN T B CaBAM 3L F I fe Al 7 5% .
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Genome-wide identification and expression pattern analysis of BAM fam-

ily gene in Capsicum annuum

LI Ning', YIN Yanxu', GAO Shenghua', WANG Chang', GE Changjun’, XIE Yong’, WANG Fei', YAO
Minghua'

(1. Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement/Institute of Cash Crops, Hubei Academy of Ag-
ricultural Sciences, Wuhan 430064, Hubei, China; 2. Huanggang Academy of Agricultural Sciences, Huanggang 438000, Hubei, China;
3. Wuhan Chuwei Seed Technology Co., Ltd., Wuhan 430070, Hubei, China)

Abstract: f-amylase (BAM) family gene is widely present in various plants and plays a significant role in plant growth
and responses to abiotic stress. To further explore the information of the BAM family members in pepper and analyze
their expression patterns and gene functions, bioinformatics methods were employed to conduct genome-wide identifica-
tion, gene structure, phylogenetic analysis, and expression pattern analysis of the CaBAM gene family in pepper. The re-
sults indicated that there were 10 CaBAM genes in pepper, all of which were hydrophilic proteins and distributed in the nu-
cleus, cytoplasm, mitochondria, chloroplasts, and plasma membrane. Phylogenetic analysis divided the CaBAM gene fami-
ly into 6 groups, and the conservation of catalytic residues Glu-186 and Glu-380 was higher than that of the flexible loop
and inner loop. The promoter regions of CaBAM genes contained multiple cis-acting elements related to stress and devel-
opment. Transcriptome and qRT-PCR analysis showed that CaBAM genes had differential expression in different tissues
and under abiotic stress, and CaBAM4, CaBAMS5, and CaBAMG6 might play roles in the growth and development of pepper
and responses to abiotic stress. The research results provide a reference for further in-depth studies on the function of the
CaBAM gene family in pepper.

Key words: Pepper; BAM gene family; Gene expression; Bioinformatics
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VE R A& HH T HE 4y S A T R AR A B K Ak
G WA B E LT A KR B WO T ek
AR, BAORUE i AT e B 00 B A o A A
e e R B OB 2 5 3 EARIR D 500 24P
P& REARE I RESEY) ) SERNY S SR G e il
RSO BE AN ARAT A AU, CABT 1E Bk 2 AR A=)
POl I R P R A T T R K i D A I AR
Wk Z MR, o 322 3 M, B o-TE B
fili Ca-amylase)  B-E K1 il (B-amylase) FIVE #1815 1L
li§ (starch phosphorylase) » -V ¥ Bl X 44 Ve ¥ B-1,
4-Z2 ZEREET I, 7 T 0E 8 A ARRE SR 38 20 VT o-1,4
B B, AN T 3R AT K 7= W B- 22 2F A R B
K™ p-VE K I T 5 K 3 B X % 14 (glucosyl
hydrolase 14 families, GH-14) , & — 4> Glyco_hy-
dro 14 {57 4538 (PFO1373)", iZ AR 7 G5 M)k 5 A
2 A BEAR ST B X4, 43 AL T N s Fl 5 A — N4l
X HC AL B, B-E R g (BAMD 2R X1
EAET Z P, i3l wd I+ (Arabidopsis thaliana)
T 9 AN KFE (Oryza sativa) 1A 10 4 K (Zea
mays)"PAH 13 A7 A (Solanum lycopersicum) H 4
8 > BAM He PR 5 51

TERE A AE Y e T, AtBAMs 1 Dh g & 45
FREFRRAED, B G ie b KgER A k2 52
FpARA P E REEARB AL FY, AtBAMI &
FEG T o e K B e R A% O B, A7 BT 78 7 ) Bl R
5 Sk S ALV R PR AR D 22 2 W, Dy ra e it H
Re B RURT, JE AR I HH ARG T 52 55 A f e 1 R
1M, AtBAM2 Y5 i) BAM 5 PEIZ KT BAMI 5%
BAM3 , e H B A ok A 523507 BAM3 S AUl
T A B p-vE R B, LR R AT A R
R FIERIE, IR R ARIR 2. BAM4 Al BAM9 H
A L F R , 3508 S AE AR, B = KR VE R a-1,4
BE 7 B2 1) BE 1Y, BAMA4 A2 Y€ K B i 100 15 751
bam4 FRAAR LR UER L BRI BAMY WU UE
Ky B A, i AN 5] B 558 26 A I AR BAMS 4B
F S M SR T L B-VE R B 90% DL Y,
BAMG6 52 )\ BAMS [R5 (4K Jv B B S AR T oK,
HA S>>, BAM7 f1 BAMS B 7 % Gly-
co_hydro_14 i 57 25 #4382 4, it H. 45 BRASSIN-
AZOLE RESISTANTI1 (BZR1) 25 7Y DNA 45 &34,
BZR1-BAMS 2 Bt 5 = , I H ) L KA K
B HRREAER, AT WL, BAM BRI 5K 2
Z 5K AR Y aa e B 5, HLAE AR AR IR
e RIEEEER. Bl SiAMEYI T BAM
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RN F IR R B D . D2 % e B 2RI
S RIEN BAM G StBAMI . StBAMY . StBAM7 .
PCT-BMY1,RNAi-StBAMI tk Z [¥) p-ie ¥} B i 11 [
i AT e R B BB I, RNAL-StBAMY th & 1)
BTN Bl S VE TG 2 25 A A, (0 R B 3 e by A
%):TQJ[ZS-N]O

B (Capsicum annuum L.) 7& —Fh 5 2 1550
I e 5 2 R I o 5 T R K 1 B SR A
BOAUE K FE 5 2RI iR Sh AR AR i 5
JHIRAEL 5 AT 52 M) SR 5 it ST B 7 o BRARUR BAM %
DRl 55 i 1 53 % Dy e 1 AN T 2, 5 8 UL BAM B: A
FIEH o HAE R E AR a b A e lf
HEE . BT I, 5 75 4 5 B 4 7KCF X B
BAM BRI KR R 14T 4w, SRR - AEE BT+
BOWZ SR & A AL G OG R RS R T S
DRl &5 4 < 3 37 i QAR F e A &5 3 AT F , 1)
qRT-PCR S 7R AR il 38 T 16 3R 1A B QA7 50
I3, LA D 5 B2 B B BAM J DR 5K 0% 1Y) 1)
RE 5 BL Al

1 ARSIk

1.1 #H CaBAM BB KIEH RAHEE

FE A B PepperGD (45 i (http://ted.bti.cornell.
edu/cgi-bin/pepper/index) Al BHEPFE K 4H SGN
ufi Chttps://solgenomics.net/) « 8L B 7+ TAIR % ¥ /&
(https://www.arabidopsis.org/) 1 7K f&§ RGAP [ ¥k
(https://rice.uga.edu/index.shtmD) , 7 5l T % B #
Zhangshugang . & 7ifi (version SL4.0 ) . fiii T (67/3,
version 4.1) « L B 7 (version 10.0) 1 7K F (version
7.0) 1= DRI 24 Hiim i PR 2H 45 #4031 RE L CDS 741 J ik
H P SCF . 1E InterPro U4 2 (https://www.ebi.
ac.uk/interpro/search/text/) T % - V€ ¥ Bl R 57 45 74
1, Glyco_hydro_14 [f] HMM (PF01373) , F| il TB-
tools £ 15 ¥ & Simple HMM Search #2372, 73 5l X}
BB T 0 AN T MK AR AT A 2R, 3R A5 i
1% BAM & H 741 s i3k — 2 F A SMART (http:/
smart.embl- heidelberg.de/) 1 Conserved Domains
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.
cgi) B2 77 W Fir A {5 36 28 1 7 2 465 A el gk A7 480
B 20 € B PFO1373 45 #3801 B 9 BAM 5%
R
1.2 ##l CaBAM & B4 E . B R B 3h 7 X
XS h

] A TBtools £ {5 °F £5 (Version 2.310) Protein
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T A BUBAM S K 45 5 K RIS A

X ISR 5T

Paramter Calc UL [HI X BH CaBAM ik £& 1 i /7 41
BEAT BRAL R AE 23 B A0 e A4k 5E £ 50 B, B H BUS-
CA (http://busca.biocomp.unibo.it/) #f 1T CaBAM &
5T S 48 i 5E A5 7T 5 F T NCBI CDD (https://
www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) ~ #l
MEME 7t 28 #2 J7 (https://meme- suite.org/meme/in-
dex.htmD 7351231 CaBAM & [ {5 57 45 4 3 7 2R
2P 3R EL CaBAM FEDR K5 il R ik % 6% 1 E
JiF 2000 bp /7 51|, F| i PlantCare [% 3 Chttp://bioin-
formatics.psb.ugent.be/webtools/plantcare/html/) Tl Il
Ja 3T X Te At s KA TBtools HEAT G (AR & 47
WA IR ZE RS 37 oS5 A 2 5
1.3 #RH CaBAM % [F5I b3 R R Gt A B

i F| Clustal Omega Chttps://www.ebi.ac.uk/jdis-
patcher/msa/clustalo) X %5 & Hi IR 2 A5t i 1~
PEG I AR BAMs 8 H AT 2 P81 exs, i 2 b
BRI RGEK BN, ZERE NEINS L,
K H] iTOL (https:/itol.embl.de/, Version 7) % R4 K
B WRAT AL .
1.4 $RH CaBAM BEE R FIEEX S

M NCBI SRA 2~ JEHH5 T B Zunla-1 A
7] 41 23 Je 2R SR A B B (PRINA193077) A1 Bt
CM334 AR AR A= Py d8 4k P (PRINAS25913) %
S EARE Y, LLBUI Zhangshugang S 2 25 FE R 41
AT FE KR IE T Zunla-1 AFRIELA KRR E
B B0 45 AL AR PR AR L =25 S RO IR 4K
i M58 42 BT B A6 2, ANRUR B B BRI 8 R L 2 i
SAFD B € 0 S 5200, CM334 AN R Al A W de Ak
Oy 6 E B A B, AR b 18 A BER T Y
10 °C it 38 Ak R 504 40 °C, & i 18 AL 2 D
50 mL 400 mmol - L™ ff] NaCl ¥ ¥ , T 5 e kb 2y

50 mL 400 mmol - L™ ¥ H #& B W, 2 BITEALEE 0.
3.6.12.24.72 h BUH 4R e SR IUBRA CaBAM
FEREA R K B W BOFAE A Y e b R 1)
7 RIBVEHAE , FIFH TBTools £ 15 F & HeatMap
SRR R IE B,
1.5 WA EHEEAFEREMIET CaBAM EE 1)
gqRT-PCR 2 #f

RIS B R A 22 AHL 17-03, & i b4 &k
BEFBE 2 B AE Vi 70 B i R IR AL E S 2 AR A A
aitb B R E AR E L 2R 3 A 17-03 (1)
HENESNUSIAR UL I 3 W IR TSN R e
fIC IR AR B H5F 2020 4F 6 F 15 8 3% FlUTE 15T 5 st
A 5 R A6 2 E s S 50 = 58 A, AH OGAE B RNA £/
17T -80 °CHBARIR VKA - 7F BRABE W N 6 &
AT IRIR AL B, 4 °CFALEE 0.1.3.6.12.24 Fl
48 h B RAEFE 5, BUBERB AT N5 3 F e & R I I -
-, AR R O %% B S ARl AT IR A IR R X
RNA.

RNA $2HUfd ] MagZol 77l (Magen, |~ M) , ¥
% 5% Af F] HiScript 11 1st Strand cDNA Synthesis Kit
(Vazyme, 5 ) o #J A Primer3 Chttps://primer3.ut.
ee/) it 514, qRT-PCR J7 =46 Il CaBAM FE A i)
RiLE, UL CaUBI3 AN B HEH™, qRT-PCR %
7t CFX384 Touch ™ % )% & & PCR £ Wl & 4
(Bio-Rad, & [H) L iEAT, IOMAR 52 K S SR 2 1R
Yu ZEPRIE . MR E 3 ANESE R 20T
AT EERAMN REE. SIWHRR —EE A
A& R AE B 1.
1.6 HUESH

K H Excel 2019 At P &4 & 2: ], K FH SPSS
19.0 X & 47 2 = W E VAT

F1 ZHILEE PCR 5514
Table 1 Primers for quantitative real-time PCR analysis

BN ElEVEZS NREEE7 2] AL kY2l

Gene Primer name Forward primer sequences (5'-3") Reverse primer sequences (5'-3")
CaBAM1 qBAMI1 CTCCATCATTCTCGGCTACTTC TTAGCTGGCAGGATAAAGTGAG
CaBAM?2 qBAM2 CTCATGCCGACCCAAACT CGCTGTGTAGAAGCTCGTATT
CaBAM3 qBAM3 TGTGATGCTCCCACTTGAC CCCTTCAGCTCCAGAACTTT
CaBAM4 qBAM4 TCTGGTTGTGAACATCTCTTCTT ACCAGATGCCTTCAGACTAAAC
CaBAMS qBAMS ACACATGCAACAATGAGCAATC TCATTATTCGGGTCGGCAAAT
CaBAMG6 qBAM6 ATCGGTGCAACGCCATTA GCCATCGGTGATCTCCATATT
CaBAM7 qBAM7 GCCGGAGGCAATGAGATT GGCTCGAGTAATTCCAGTCTTT
CaBAMS qgBAMS AAAGGCAGCAGAGACATGG TACCAACGCGAGAAGAAACTC
CaBAM9 gBAM9 GGATGATGACGACGAAGAGAAG TGCTCCTGATATTGCTGATGG
CaBAM10 gBAM10 TGATTGGTCTGCCTATAAGAGC AAACCACGTCTCCTACATTCC
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2.1 FHl CaBAM ERREEEREBELMERS
#r

MBFH Zhangshugang & A 4H Hh 3L 45558 2] 10 4>
CaBAM & [, 14l CaBAM N 7E G ttik 1o Ai
Wi FF , 5 % N CaBAMI~CaBAMI0. & [ E AL 7

HTEIN,CaBAM H HKE A 366~694 aa, FRIBEEH

RORTAR X 4y F BT & 4 il N 5.6~8.23 Fll 41.84~
77.88 kDa. A E REIAGAE 31.12~47.54 Z |H],
H. CaBAM1.CaBAM2.CaBAM6 1 CaBAMO [{]
ARRRECKT 40, TN AFE B B IR S 18 8035
/INT 100, P35 SR K P HE 38y A 8, R W] CaBAM
FABRNEKEEA. 400 & 7 HEE,
CaBAM Z I 73 Aii T 20 MU AZ 20 0 o« 2 ki 44 | - &
PRFN T R (3R 2D

2 P CaBAM E R IBL IR R 4HAEE L

Table 2 Physicochemical properties and subcellular localization of CaBAM proteins in pepper

; . F& 4L Protein characteristics )
s s Rl T
o Chromosome = = MAIT  MRMAA FRGERE WERE P9 Subcellular
Accession  Sequence ID .. Protein e . .. . . - .
position leneth/aa Joi Theoretical Instability ~ Aliphatic ~ 7KF&E%L location
¢ MW/kDa pl index index GRAVY
CaBAM1  Caz01g00840.1  ChrO1 570 64.43 6.58 47.54 67.25 -0.350  ZBRifk
Mitochondrial
CaBAM2  Caz01g00900.1  Chr0l 519 59.25 8.23 44.04 69.88 -0.239 RS 2N
Chloroplast
CaBAM3  Caz01g07750.1  Chr01 545 60.87 7.59 34.95 68.55 -0.451 I EEN
Chloroplast
CaBAM4  Caz01g28740.1  ChrO1 534 58.68 5.86 32.90 75.75 -0.289 iz
Nuclear
CaBAMS5  Caz01g38970.1  Chr01 666 75.49 6.27 38.46 66.32 -0.530 4k
Nuclear
CaBAM6  Caz03g37400.1  Chr03 577 64.67 5.77 43.51 68.32 -0.414 41 5
Cytoplasmic
CaBAM7 ~ Caz07g14590.1  Chr07 626 71.68 7.93 35.65 76.52 -0.388  ZRkifk
Mitochondrial
CaBAMS  Caz08g07690.1  Chr08 366 41.84 6.90 31.12 70.68 -0.396 EiiliioniA
Nuclear
CaBAM9  Caz08g07710.1  Chr08 694 77.88 5.60 44.17 69.86 -0.440 A%
Nuclear
CaBAMI0 Caz12gl11620.1  Chrl2 396 44.93 8.17 39.03 75.18 -0.488  JHJE

Plasma membrane

2.2 HWBAMRIEEHRSK A B WEE

PR T RS A RHEY) B A6 i VIR T
KFEIL 5 FEYIHI BAM KiEE H R R 8 M (K
Do 255 3EW, BAM FKG# I 73 6 141, Group 1
£0,35 B CaBAM3 1 CaBAM6, CaBAM3 5 % i
SIBAM6. fili 7 SmBAMS % 2K #£ — /™ I 4 ,
CaBAM6 5 % Jiii SIBAMS. Jili - SmBAM10 % 7E
— NIE 4 5 Group 1T £ 45 3 /M Bl BAM &
CaBAM1. CaBAM2 #l CaBAM4, CaBAMI 5
CaBAM?2 /& 7 17 3£ [H XJ ; Group III £ 5 3 #
CaBAMS5. CaBAMS Fl CaBAMY; Group V 3 i
i CaBAM7 F1 CaBAM10, 5 7 #ifi SIBAM3 17t 1
SmBAM3 1L [Fl— 4 ; Group IV (X HE/KFEI Os-
BAMS £l OsBAMG6, Group VI 1V AL #5400 5 7 ) At-
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BAMS HI AtBAMG, iX P /> MV 26 vh 3% A7 BRAL 75 i
FIHET 1) BAMSs F %
2.3 #HCaBAM & B &£ #ig 5 & R &7
Xf CaBAM F 5t A 7 S EAT LU o0 #r, %508
F| BAM 1 3 AN BE LR 57 17 41 [X 38 Region
I. Region II Al Region III, 73 %l €4 & 1 /™ Flexible
loop(GGNVG) 1 ML TR ZE Glu-186 (GELRO A 1
A Inner loop (NFTC) , BE 4N G FE 1 A i 4k 5% JE
Glu-380(GENAL) . £ CaBAM F & A+, 1k
B 3 Glu- 186 1 Glu-380 i {57 1 % T+ Flexible
loop A1 Inner loop (K& 2) . 3t — 2P [ {3 57 2 JF (mo-
i) TR , 7 A7 & CaBAM 25 [ H 3 4R
SFHEEJT, A& CaBAM 5 A7 41 1 25 L 40 B,
Motif5 FLH5 1L 5% I Glu-186, Motifo £33 i b 7%
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Fig. 1 Phylogenetic tree of BAM proteins in pepper, tomato, eggplant, Arabidopsis and rice
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Fig. 2 Multiple sequence alignment results of pepper CaBAM family proteins
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