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Abstract: In order to deeply investigate the specific regulatory mechanism of SIAMRI, an ascorbic acid (AsA) synthesis
regulatory factor in tomato, the homologus gene SIAMRI in tomato was screened using the Arabidopsis thaliana AMRI1
gene as a probe. Overexpression and RNA interference (RNAi) expression vectors for the SIAMRI gene were constructed
and introduced into the tomato line Ailsa Craig (AC)via Agrobacterium-mediated genetic transformation. The expression
levels of the AMR1 gene, key genes of AsA synthesis pathway, and the corresponding AsA content in the transgenic mate-
rials were determined. The results showed that the content of AsA in the young leaves of OE6-8 and OE12-6 lines
decreased by 92.66% and 95.41% compared with the control, respectively. In contrast, the AsA content in the young
leaves of RNAi2-4 and RNAi13-11 increased by 26.86% and 56.49%, respectively. Evolutionary analysis in different
species showed that SIAMR1 and AtAMRI1 protein had relatively high homology, and SIAMR1 domain analysis also
showed that SIAMR1 and AtAMRI1 protein had the same domain at the N-terminal and C-terminal regions. This study pre-
liminarily revealed the role of SIAMR1 gene in the regulation of AsA biosynthesis and metabolism in tomato.
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Fig. 1 Amplification of the full-length SIAMRI1 gene
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Fig. 3 Analysis of SILAMRI expression profile (A) and total ascorbic acid content (B) in different tissues of tomato
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Fig. 4 Processes of tomato genetic transformation
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Fig. 5 Positive detection of some transgenic T, generation plants
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Fig. 6 Detection of SILAMRI expression level (A) and AsA content (B) in leaves tomatot ransgenic lines
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