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Detection method of cherry tomato fruit ripeness based on SSPENet
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Abstract: To achieve rapid and accurate identification of cherry tomato fruit ripeness in greenhouse environment, this
study proposed a ripeness detection algorithm based on the stereoscopic spatial pyramid attention network (SSPENet).
First, a spatial stereoscopic attention mechanism (SSAM) was constructed to enhance the perception of fruit features by
adaptively focusing on key regions. Second, a local attention pyramid module (LAPM) was incorporated into the neck
network to strengthen the feature fusion of small- scale cherry tomato, thereby improving detection accuracy for
small-scale targets. Finally, an efficient geometric regression loss function (ZLgcr) was proposed to optimize the geometric
properties of bounding boxes, further improving the localization accuracy for small-scale cherry tomatoes. The experimental
results showed that SSPENet achieved 96.1% mAP on the cherry tomato ripeness dataset, representing a 5.1 percentage
point improvement over the baseline model, with an inference speed of 94.7 frames per second. This achieved a good
balance between detection accuracy and computational efficiency. This study provides an efficient and scalable technical
solution for cherry tomato ripeness detection in greenhouse environment, with broad application prospects.
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Note: A. A scene featuring fruit overlapping and occlusion caused
by branches and leaves; B. A backlit scene characterized by fruit over-
lapping and occlusion from branches and leaves; C. A front-lit scene

with occlusion due to branches and leaves.
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Fig. 1 Cherry tomato image sample sample
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PERE.
14 REPRRESMESHIEE

AR 36 L B R A FE A DA 58 1) 11, AR
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(VR TC B AR IR B a0 3R 2 s o

FE I 50 A2 bR B N R RST BN 640 %
640, MUA%S: 2] 1 E y 0.01, 5/ 2] %59 0.000 1,
WIZREE N 300, #ibE KA 8. shE S HHIRLEH
T > A E N 0.937 H10.000 5. Ak 7 ik
Ranger (& RAdam Al Lookahead J7 AL 4%)
FE4h & 3 1E B RA BE I B2 5 B (adaptive gradient ad-
justment) Al A% Ui B 7 2] F6, DAY AR A (1 Ui SRR
Hilgtae k.
1.5 TN ERR

X T 26 2 B S R FE A DA 55 1T & L AR )

« 57 -



X ISR 5T th

R % %384

2 WHEBEHEREMRGTE
Table 2 Experiment hardware configuration and
software environment

T M B 24 B it & 25

Hardware Parameters Software Parameters

CPU Intel Core i9-10900K CPU| #:1E &4t Ubuntu 18.04

Operating system

GPU NVIDIA GeForce RTX PyTorch 1.8.0
2080Till G

WA 64 G CUDA 11.2

Memory

i3 2T CUDNN 8.1.0

Hard disk

PIA 5 7] I S U RS B2 5 b B % . Dyt SR
A % (precision, P) « A [0 K (recall , R) V- ¥ & &
¥J{H (mean average precision, mAP) X} £ 155 1 7F =
22 R Pl A ARSI T R 1 R AT E BV . (RIS,
FHAG 3 J (frames per second , FPS) A Sy fiif £ 45 77
SR BRI E B AR bR . AL, iR 24 E (num-
ber of parameters , Params) F1 7% 12 5 X £ (floating
point operations, FLOPs) P 15 5 (1) 1 45 & % i 1l
K

2 AR5

2.1 AREEEDISIEETE

Nt — IR TR SSAM VER ML 7EE
1 SR SRS R ARG I H PR R0, TR BT R 43
N CBAMP SEPHI ECAPYE R H ML, 7 3% 2o R
SRR EH TR, 645 AR 3 FiR.

BHR 3 AT, RN AN [F3E = ML, AR 1)
Tor DA B2 3 0] 26 2~V 5045 FE S5 (B 25 4 7t R
BF 3 755 DML 6 51 N BE 85 A 255 55 D) 44 X6 Rp 1iF 15
BHERAE 77, WIS T Bkl Ve . ECA HL
T A TR AE IR B T 93.2% 1) mAP, B
T SE 17 /1Ml . CBAM MLI45 & 25 0] 58 iE i
BN, mAP BT E 94.7% , H i K T [EFE
91.5 FPS. HH1,SSAM LI 1 96.6% M HER 2, AH

®3 AEIEEANNSIMEREX L

Table 3 Comparison of performance of different attention

mechanisms
VR I W HRE SRR R
Attention mechanism  P/% R/% mAP/% FPS
Jt None 93.1 88.1 90.2 96.1
SE 93.8 90.4 91.7 92.3
ECA 94.2 92.6 93.2 95.7
CBAM 95.8 93.3 94.7 91.5
SSAM 96.6 93.9 96.1 94.7
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ORI = 0L 3271 1 3.5 Ao sl Bb4h, H
5] 2 F1 mAP 43 ik E] T 93.9%F1 96.1% , ¥ T H
AR R UL . SSAM FE LR FF 5 i A B A A [l 2
féy [R]BF, SE3 T 94.7 FPS (¥R I T FiE , 35 B L R g
SHETUAS, I 1 B 55 S B 1 5 3@ T 26 2o AR S A
RrIAESS o I AR 5

Nt — 2 B 7R AN RV = 0L R 2
FOR SR BB R W ORFAE R 52 ome, R OH
Grad-CAM™ 2R J0E #4077 BT BRI 3 ANt )=
BEAT AT AL 23 T o I i g 1 RT AR R T
If B B XA, 48 s R BR R AR 1 9% T 20 AT,
MNTTT B v B ) ] B o B 0 L 45 S ] 5
It s e v 200 X SRk o 57 | TR AR B K, RN B
P RTINS v A

H1 15 FT AL, 2 E M2 2 5l 51 N CBAM,
ECA F1 SE VE = JI LI, [0 45 Xof %5 48 73 A1 1 26 &
RRLAF B SRE IAAAE — AL, L2 SE
VR L], F SRV Xy 7 il HL S o Y A
B, HARFFIER SR AR o #HELZ T, SSAM V&
JIWUH XS 2 2R A B R IR PR OV R B v » BE S
SE DR #EHL A R H A5 s (E AL EAE S RN AR S 0
My s v b AR SR X3, JR I K B 9 ) R AIE 08
RE 5 EALRE T
2.2 NEHRREHXTEE

NI Leae 392 5% B8 B0 R0 105 H Fn ks il
BB 0] )3 451 2 FB 73 BEAT R GE 0 Bl . 1K
CIoU. EIoU. GIoU (generalized intersection over
union) *', DIoU (distance intersection over union) ",
SIoU (segmented intersection over union) i 17 %
L, DDAl EATIE 25 2 SR R S5 B A U AT 55 o )
Rz . IR WK 4 s

HI3 4 AT AN, A [F) 403 2K bR BN 26 22 2R B 2
R AT 5% v 4 B 22 7 B &L . GloU 1 DIoU 43
il SE B 92.6% A1 94.8% ) mAP , {H ££ 4 [] 2 1 i
T 28 b R I — M, 2R W AR 14 S JLART A8 4k 1Y
RE JIAFAE SR BR 1% o EloU 3 ik o 33k i 57 HE (1) 98 15
EC I R vl s E A7 SRS, K mAP R T &2
95.0% , ¥ {4 T GloU #1 DloU. SloU # — 5 i
55 = L A7) UL AT , mAP 3k 3 95.5% , 1 if % A1 A
o] 2 A e $E Tt BB 1 AR U AR R 2k A8 A 1Y
. ML, Leoe 33 32 TH A7) 39 Yie S50 A
PRAG T B R e, BEORE B b B B T TN AE 5 B SEAE
(R JUART AR ABA A S AT 4 T 42 T A B A U A e . L
HER L B 2R mAP 43 5935 £ 96.6%93.9% M1
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Note: A. A scene characterized by overlapping fruits; B. A scene with severe occlusion caused by branches and leaves; C. A scene affected by

background interference from foliage.
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Fig. 5 Activation heat maps of different attention mechanisms in various complex environments
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Table 4 Comparative experiment of different loss

functions %
TR R diiipes HIalZ SRS BE R
Loss function P R mAP
CloU 96.0 92.8 95.2
EloU 95.9 934 95.0
GIloU 94.3 91.2 92.6
DIoU 95.4 92.7 94.8
SloU 96.2 93.7 95.5
Lear 96.6 93.9 96.1

96.1% , 3t — 2P B 7 HAE /N H AR R AT 55 A 1 e
R

2.3 HERIXIE

i IV Al EE 2> M SSAM 1B I HL#] . LAPM
PR Lo 5355 0RO AT UM RE R RZ M . BT AT 156
BIEA R IR A S B0 B AT, DRSS R
HERfME . SSPENet B )3 it ae 45 S ank 5 fiow,
o/ 7 RoR i G, X" FOR AR %R

H# 5 ATLAE H, Bl 5] N SSAM 7 2= JJ ML
Joi » BT mAP $2THE 92.3%, [F] i 2 H g i
T2 2.7 M,FLOPs ¥ % 6.9 G, % 8 H W & (1) K &2
T BCR . A AN LAPM 55, mAP ik F
92.0% , FETE TR R T AR FFR AR I, I R
TFEE M o SR Lo 30125 3R UG , mAP #2742

F=5 HRt
Table 5 Comparative experiment of different loss functions

SPYREE AP/% e ST U SR ek

Raw Medium raw Ripe
Vv x x x 90.1 90.9 920 899  91.0 99.8 2.6 6.5
Vv VvV x x 919  92.1 929 915 923 98.5 2.7 6.9
Vv x Vv x 915 917 928  91.1 92.0 97.8 2.8 75
Vv x x VvV 914 917 926 909 919 99.3 2.6 6.5
Vv Vv Vv x 948 947 96.1 928 952 96.3 2.9 8.1
Vv Vv V V 953 959 97.1 939  96.1 94.7 2.9 8.1

.59.
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96.1% , M ZHE AN 0.3 M, R B IBE A 16 ] £ Fb
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U 1 S B8, AT S BHAG DN 2% R 5 o A 1 1P
1. Bl 6 Ron 1 Ul AR % 2K J Bk mAP
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G OLT , P-R S P B RS ) T AR B OK , 45528
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0
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HInlER R/%

AN YOLOVI #828) P-R 1% :B 2y MSASNet #5151 P-R fili2k.
Note: A. P-R curve of the YOLOv11 model; B. P-R curve of the MSASNet model.
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Fig. 6 P-R curves of the model before and after improvement on cherry tomatoes fruit maturity dataset

LOvI11 B3R, it — P IGHE | SSPENet £EAMIH
JEE RN AR e L AR e
24 AEMEBIXTEE
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WA 2, 75 B B4 oK 3L S o A iy
AT L8 . B 3G Faster R- CNN. SSD. Deform-
able- DETR?Y, DINO®, RT- DETR®, YOLOX. YO-
LOvV9.YOLOV10 1 YOLOv11. *FECAESRUEE 6 Al .

H1% 6 T %0, Faster R-CNN 1 4y XU B I 5
%, 7E mAP JT A 2] T 85.7% , FE I HH ¢ & IR A
DUAS BE, AH B T Uk B R 2 R A, R T A
6.9 FPS, X DL /& SEAf ALl 75 2K . DINO Al RT-DE-
TR /£ mAP J7 [ 73 5l 15 £ 88.9%H1 89.0% , B T
YOLOX BB, (BT HK, R RE SIS B 52
K BRI T4 . YOLOVY LLiR/DHISEEM 7.7 G
ff) FLOPs 5281 1 89.3% ] mAP, % Bl H #¢ &1 1 16
MZLZE;YOLOVIO0 ¥ mAP $2 T+ % 90.2% , {E A& i3
FEmEA N B YOLOVIL #3E— DAk 7 k5 5 il
(P4, SEBL T 91.0% 1) mAP 1 99.8 FPS 1A% il
P, E YOLO RAE LRI . 1 SSPENet
FRAE mAP ik F] 96.1%, MHE T iR 5L Bk
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Table 6 Contrast experiment

ZHE FRE

o T I SN ET 3] [ o :
Algorithm FoOF JFEWME WEE Params/ FLRE
P/% R/% mAP/% FPS M FLOPs/G

Faster R-CNN 86.3 85.0 85.7 6.9 102.7 1684
SSD 85.5 83.8 84.8 17.6 29.4 99.1
Deformable-DETR 89.9 88.8 89.2 58.6 40.0 173.0
DINO 89.2 884 88.9 55.4 47.5 1785
RT-DETR 89.7 88.7 89.0 62.4 20.0 99.1
YOLOX 88.4 869 879 68.4 9.0 26.8
YOLOV9 90.0 88.7 89.3 101.2 2.0 7.7
YOLOv10 90.7 89.3 90.2 100.3 2.3 6.7
YOLOv11 91.2 899 91.0 99.8 2.6 6.5
SSPENet 96.6 939 96.1 94.7 2.9 8.1

F+ 10.4.11.3.6.9.7.2.7.1.8.2.6.8.5.9 f1 5.1 & %
R, JRE SSPENet [ il 2 B4 % T YOLOvV9 F1 YO-
LOVI10, {H7E CRAF ey S PR 0 [RIE, S8 1 A e P s
RS EE , FE B H LB 255 Ve e

R VLR 7 SR e i S ke T R 3 A
TUKS FER =1 4 PR AN [R50 N 22 R R sk
S PG AT LI, A R an P 7 s
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PEHS 23 (0] R RE S B, M LA 24X 4 54k H b
X3k . AR 5 SSPENet 7 %285 Ju 3% 5t b 15 Jig
I L B R (A DU i« T SR Y DXk, BT 51N 1T
SSAM VE & Sy ML Re i S AR T R Sl & & W E
AIE DX A5, B2 ) R 30 45 4 () U s 7E SR S AR
S EcH, LAPM fHUE T & 73 X 2 R s,
BN T R IAE 28 S H ARV )8 5 17 78 6 I
AR ZLR 264 T, BB R OR R = A D AR
P —tk . BhAk, SSPENet #5554 78 fir G #6 Il H b
b AT R 3 A A B v T A e B, R L

SSPENet
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Note: A. A scene under backlighting conditions with overlapping
fruits; B. A front- lit scene with occlusion caused by branches and
leaves; C. A front-lit scene featuring overlapping fruits.
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Fig. 7 Visual comparison of detection results of different
algorithms
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