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圣女果作为一种具有高营养价值的小型番茄

品种，近年来在全球范围内的种植面积和市场需求

持续增长[1]。果实成熟度的准确识别与分级采摘对

于其贮藏稳定性、加工适应性和商品价值具有至关

重要的影响。然而，在温室种植环境中，受限于种

植密度大及温湿度波动明显等因素，圣女果的成熟

度检测、分拣与采摘作业仍高度依赖人工，导致整

体作业效率低下，难以满足现代设施农业对高效与

智能化生产的要求[2]。因此，开发一种实时检测圣

女果成熟度的检测方法，不仅有助于提高采摘效率、

降低人力成本，还能有效推动温室果蔬管理的精细化

和智能化，具有重要的工程应用价值与现实意义。
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摘 要：为实现温室环境中圣女果果实成熟度的快速精确识别，提出一种基于立体空间金字塔注意力网络（stereo-

scopic spatial pyramid attention network，SSPENet）的圣女果成熟度检测算法。首先，构建空间立体注意力机制（spa-

tial stereoscopic attention mechanism，SSAM），通过自适应聚焦关键区域，提升对果实特征的感知能力；其次，在颈部

网络引入局部注意金字塔模块（local attention pyramid module，LAPM），增强小尺度圣女果的特征融合，提高小尺度

目标的检测精度；最后，提出高效的几何回归损失函数 LEGR，优化边界框的几何特性，进一步提升小尺度圣女果的定

位精度。试验结果表明，SSPENet 在圣女果成熟度数据集上取得了 96.1%的 mAP，相比基线模型提升 5.1 百分点，

且推理速度可达 94.7 帧·s-1，在检测精度与计算效率之间实现了良好平衡。该研究为温室环境下圣女果成熟度检测

提供一种高效且可扩展的技术方案，具有广阔的应用前景。
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Detection method of cherry tomato fruit ripeness based on SSPENet
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Abstract：：To achieve rapid and accurate identification of cherry tomato fruit ripeness in greenhouse environment, this

study proposed a ripeness detection algorithm based on the stereoscopic spatial pyramid attention network（SSPENet）.

First, a spatial stereoscopic attention mechanism（SSAM）was constructed to enhance the perception of fruit features by

adaptively focusing on key regions. Second, a local attention pyramid module（LAPM）was incorporated into the neck

network to strengthen the feature fusion of small- scale cherry tomato, thereby improving detection accuracy for

small-scale targets. Finally, an efficient geometric regression loss function（LEGR）was proposed to optimize the geometric

properties of bounding boxes, further improving the localization accuracy for small-scale cherry tomatoes. The experimental

results showed that SSPENet achieved 96.1% mAP on the cherry tomato ripeness dataset, representing a 5.1 percentage

point improvement over the baseline model, with an inference speed of 94.7 frames per second. This achieved a good

balance between detection accuracy and computational efficiency. This study provides an efficient and scalable technical

solution for cherry tomato ripeness detection in greenhouse environment, with broad application prospects.
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传统番茄成熟度检测方法主要依赖计算机视

觉技术，通过颜色或形状等低层特征进行图像分析

与分类[3]。例如，Yin 等[4]利用 CIELAB 颜色空间和

K-means 聚类算法对番茄图像进行分割，并结合形

态学处理实现了重叠与遮挡区域的剔除，检测准确

率达到 95%。Liu 等[5]提出基于番茄轮廓特征的分

级方法，利用傅里叶描述子提取形状信息并结合线

性回归模型进行分类，结果表明该方法的平均分级

准确率为 90.7%。梁喜凤等[6]采用最大类间方差法

（Otsu）对 R-G（Red-Green）直方图进行分析，实现了

番茄成熟度的初步划分。然而，上述方法高度依赖

手工提取的单一低层特征，难以全面表征果实在复

杂背景、光照变化及遮挡重叠等实际场景中的多样

化表现，易导致检测结果不稳定，难以满足温室环

境下对果实成熟度检测的准确性与适应性要求。

随着深度学习算法和计算机硬件性能的提升，

基于卷积神经网络（convolutional neural network，

CNN）的目标检测方法为果实成熟度检测提供了全

新的技术路径。CNN 系列算法可细分为两阶段算

法与单阶段算法。其中，两阶段算法如 Mask

R-CNN[7]和 Cascade R-CNN[8]，通过生成候选边界框

实现高精度检测。Zu 等 [7]提出了一种基于 Mask

R-CNN 的绿色番茄检测与分割方法，采用 ResNet

作为骨干网络，并通过区域建议网络（RPN）生成感

兴趣区域，实现了绿色番茄的检测与分割。岳有军

等[8]将 Cascade RCNN 网络中的非极大值抑制算法

替换为 Soft-NMS（soft non-maximum suppression）

算法，采用适合番茄形状的锚框，从而增强模型对重

叠果实的识别能力。Hu 等[9]提出了一种结合 IFS 和

R-CNN 的方法，用于检测重叠的成熟番茄，显著提

高了检测精度，其预测框在水平方向与垂直方向的

中心偏移平均相对误差分别为 0.261%和 1.179%。

以上基于两阶段的算法通过生成候选区域并进行精

确的目标定位与分类，能实现较高的检测精度，但其

计算复杂度较高，限制了实时应用的普适性。

另一类单阶段方法如 SSD[10] 和 YOLO 系

列[11-13]，通过端到端的目标分类与定位，显著降低模

型复杂度，进而提高检测速度，因而更适合实时检

测需求。张磊等[14]提出了一种改进的 YOLOv4 算

法，旨在应对复杂环境下番茄果实的检测问题。该

方法能够在 6 种不同环境下有效识别番茄，并对成

熟度为成熟、半成熟和未成熟的番茄进行分类，其

平均检测精度分别达到 84%、77%和 85%。Liu

等 [15]设计了一种 YOLO-Tomato 模型，引入密集架

构以增强特征复用功能，提高模型的紧凑性和准确

性，进而实现对番茄成熟度的检测。尽管这些方法

在检测精度上取得了一定进展，但由于目标定位精

度不足，特别是在复杂场景中难以精确拟合番茄的

真实轮廓，仍存在一定的局限性。为此，刘芳等[16]引

入多尺度检测结构，通过更精细地提取番茄果实特

征信息，并优化类别标签与预测框的生成过程，从

而显著提高了番茄果实的定位精度。Zeng 等[17]通

过遗传算法对模型超参数进行优化，进一步平衡了

分类损失与定位损失的权重分配，显著提升了模型

对番茄果实的边界框回归能力，从而提高了定位精

度。然而，此类改进仍存在一定局限，尤其在检测

被叶片遮挡的番茄目标时，易出现误检现象且对番

茄的重复框选问题仍未得到有效解决。为应对这

一挑战，一些学者尝试引入注意力机制来进一步提

升模型的性能。苗荣慧等[18]在特征融合网络中加入

全 局 注 意 力 机 制（global attention mechanism，

GAM），以加强对圣女果关键特征的关注，从而提高

了成熟度检测的准确性。Wu 等[19]则提出上下文锚

点注意力机制（context anchor attention，CAA），旨在

通过强化模型对番茄果实的识别能力，精确地进行

成熟度和采摘位置的检测。Wei 等 [20]基于 YO-

LOv11 模型，结合通道注意力机制和空间注意力机

制，进一步增强了模型对圣女果在复杂田间环境中

的特征表达能力，提升了 6.2%的 mAP。但在处理

小尺度番茄目标时，仍存在漏检问题且检测精度未

能完全满足实际应用的需求。

尽管现有番茄成熟度检测研究已取得一定进

展，但仍存在若干亟待解决的难点：

1）在温室种植环境中，圣女果果实常遭受叶片

遮挡且果实间存在重叠，使得模型难以准确区分相

邻果实的成熟度特征。

2）圣女果果实体型较小，模型在小尺度目标检

测时容易发生漏检并降低整体检测性能。针对上

述挑战，提出一种基于立体空间金字塔注意力网络

（stereoscopic spatial pyramid attention network，

SSPENet）的圣女果成熟度检测算法，旨在提升模型

对细粒度纹理、小目标特征及复杂场景的适应能力。

SSPENet 的核心改进主要体现在以下三方面：

1）在骨干网络设计一种全新的空间立体注意

力 机 制（spatial stereoscopic attention mechanism，

SSAM），通过融合通道间关联特征与空间显著性信

息，以增强模型在复杂环境中对关键视觉区域的聚

焦能力，提升遮挡与重叠条件下的检测准确性。
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2）引入局部注意金字塔模块（local attention

pyramid module，LAPM）[21]，通过分层提取与加权增

强局部显著区域的特征响应，引导模型多尺度整合

局部特征，从而提升对小尺度果实的识别能力。

3）构建损失函数（efficient geometric regression

loss，LEGR），优化边界框定位过程，进一步提高模型

对小目标位置与形状的拟合精度。

1 材料与方法

1.1 图像采集

试验研究区域选取广东省茂名市电白区那霍

镇水石村圣女果种植基地，于 2024 年 3—5 月使用

DF500-1944P 工业相机在温室环境下拍摄不同植株

和不同成熟度的圣女果图像。采集时间涵盖上午、

中午和下午，以获取在不同光照条件下的图像数据，

共获取分辨率为 1080 × 1920 像素的圣女果图像

7061 幅。部分图像采用跟踪拍摄方式，记录圣女果

在成熟过程中的动态变化。采集的图像类型包括顺

光图像、逆光图像、枝叶遮挡图像、无枝叶遮挡图像

以及果实重叠图像等。部分样本图像如图 1 所示。

1.2 数据集构建

依照 GH/T 1193—2021 国家标准对圣女果成

熟度进行划分，将圣女果分为未成熟（raw）、半成熟

（medium raw）和成熟（ripe）三类。为确保数据的准

确性和标注的一致性，使用 LabelImg 图像标注软件

对圣女果图像进行人工标注，并将每个图像的位置

信息及类别标签保存为 XML 格式的标签文件，各

类别标签的分布情况如表 1 所示。具体而言，未成

熟类包含未熟期和绿熟期的圣女果，半成熟类包括

变色期及红熟前期的圣女果，而成熟类则包括红熟

中期和红熟后期的圣女果。为提高模型的泛化能

力，防止模型在训练数据中过拟合特定特征，采用

随机镜像、翻转、高斯模糊和高斯噪声等数据增强

方法对数据集进行扩建，该手段有效地模拟了圣女

果在真实场景中的生长姿势、光照条件和拍摄角度

的变化，从而增加了训练样本的多样性。最终构建

的圣女果数据集图像共 9645 张，图像均以 JPG 格

式保存。为满足模型训练需求，按照 8∶1∶1 的比例

将数据集划分为训练集（7716 张）、验证集（965 张）

和测试集（964 张）。

1.3 SSPENet圣女果成熟度检测算法

YOLOv11 是 Ultralytics 公司推出的最新一代

目标检测模型 [20]，其主要改进包括采用 C3k2 模块

替代 C2f 模块，并在 SPPF 模块后引入 C2PSA 模

块。通过深度可分离卷积方法，YOLOv11 增强了

对上下文信息的捕捉能力，并有效减少冗余计算，

从而提升目标检测精度。这些创新使得 YOLOv11

在检测性能上较前代模型取得显著提升，尤其适用

于对实时性要求较高的应用场景。

尽管 YOLOv11 在检测效率和精度方面表现优

异，但在圣女果成熟度检测中，受限于枝叶遮挡、果

实间重叠及尺度变化等因素，其检测效果仍存在进

一步优化的空间。为此，提出一种 SSPENet 算法，

旨在实现高效精准的圣女果成熟度检测，其网络结

构如图 2 所示。

具体而言，在骨干网络构建一种空间立体注意

力机制 SSAM，通过对输入特征图进行加权，聚焦于

图像中的关键区域，提升模型对圣女果成熟度特征

的识别能力；在颈部网络引入局部注意金字塔模块

LAPM，使模型能够在不同尺度上提取和融合细粒度

特征，避免小尺度圣女果信息丢失；此外，提出了一

种 LEGR损失函数，旨在精确度量预测框与真实框之

间的差异，从而提高小尺度圣女果的定位精度。

1.3.1 空间立体注意力机制 在圣女果成熟度检

注：A. 为果实重叠及枝叶遮挡场景；B. 为逆光、果实重叠及枝

叶遮挡场景；C. 为顺光及枝叶遮挡场景。

Note: A. A scene featuring fruit overlapping and occlusion caused

by branches and leaves; B. A backlit scene characterized by fruit over-

lapping and occlusion from branches and leaves; C. A front- lit scene

with occlusion due to branches and leaves.

图 1 圣女果图像样本示例

Fig. 1 Cherry tomato image sample sample

A B C

表 1 各类标签分布

Table 1 Label distribution

数据集 Dataset

训练集 Training set

验证集 Verification set

测试集 Test set

未成熟

Raw

27 584

3 725

3 448

半成熟

Medium raw

15 254

1 902

2 017

成熟

Ripe

34 281

4 451

4 319

总计

Total

77 119

10 078

9 784
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图 2 SSPENet 网络结构图

Fig. 2 SSPENet network structure

测任务中，由于果实常受到叶片遮挡且果实之间存

在重叠，使类间与类内特征的区分变得更加困难。

此外，光照变化对图像质量的影响也会导致 YO-

LOv11 在特征提取时难以有效聚焦关键区域，进而

引发误检和漏检。为此，笔者构建一种空间立体注

意力机制 SSAM，旨在增强模型对关键区域的聚焦

能力，进而提高检测精度。SSAM 注意力机制分为

通道注意力和空间注意力 2 个分支，其网络结构如

图 3 所示。

具体而言，在通道注意力分支中，首先对输入

特征图 X∈RH×W×C分别应用全局平均池化（global av-

erage pooling，GAP）和全局最大池化（global max

pooling，GMP）操作，提取全局通道特征以实现降维

处理。通过 GAP 和 GMP 分别从全局视角捕获通

道的平均信息和显著信息，增强通道的特征表达能

力 [18]，随后，为避免降维操作影响通道注意力的学

习，采用 1D 卷积实现局部跨通道交互，即在不同通

道之间进行信息交互，而不改变输入特征图的维

度。局部跨通道交互的覆盖范围通过 1D 卷积核大

小 k 的自适应调整来控制。卷积核大小的计算如公

式（1）所示：

（1）

式中，|t|odd 表示取 t 最邻近的奇数，γ=2 和 b=1

为超参数，D 为输入特征层的通道数，通过映射函

数 Ψ（D）实现高维通道间远距离的交互与低维通道

间近距离的交互。

将通过 1D 卷积得到的结果输入 Hard-Sigmoid

（δ）激活函数，以对卷积输出进行线性转换，从而生成

每个通道的注意力权重，激活过程如公式（2）所示：

。 （2）

式中 ，x 是通过 1D 卷积得到的特征值。

Hard-Sigmoid 激活函数有效避免了传统 Sigmoid

函数中指数运算的复杂度，同时确保输出值限制在

[0，1]。

将计算得到的注意力权重图与输入特征图逐

通道进行逐元素相乘，生成最终的通道注意力特征

δ（x） = ìí
î

ï

ï

0，x＜ - 3
x/6 + 1/2， - 3≤ x≤3
x，x＞3

注：⊕表示逐元素加法，表示逐元素乘法。

Note:⊕ denotes element-wise addition, and  denotes element-wise

multiplication.

图 3 SSAM 网络结构图

Fig. 3 SSAM network structure

odd。
k=Ψ（D）=

|

|
||

|

|
||
log2（D）

γ
+ b
γ

输入
Input

H×W×C

骨干网络

Backbone
颈部网络

Neck
检测头

Detection
H×W×C

输出

Output

全局平均池化
GAP

通道注意力 Channel attention

全局最大池化

GMP

1×1×C 1×1×C

H×W×C

X

空间注意力 Spatial attention
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图 MC（X），如公式（3）所示：

Mc（X）=X  δ [W1×GAP（X）⊕W2×GMP（X）]。

（3）

式中，W1和 W2表示 1D 卷积层的权重。

在空间注意力分支中，沿通道轴分别应用平均

池化（average pooling）和最大池化（max pooling）操

作，并将池化结果在通道维度上拼接为一个 H×W×2

的特征描述符。随后，通过 Conv2D 卷积将通道维度

进行压缩，输出一个 H×W×1 的空间注意力特征图。

接着，利用 Hard-Sigmoid 激活函数对卷积结果进行

线性变换，并与输入特征图逐元素相乘，生成空间注

意力加权后的特征图 MS（X），如公式（4）所示：

Ms（X）=X  δ（Conv2D（ [ ]Max - Pool; Avg - Pool ））。
（4）

将通道加权后的特征图与空间注意力权重图

逐元素相乘，得到最终的输出特征图 X'，如公式（5）

所示：

X'=Mc（X） Ms（X）。 （5）

在骨干网络中，SSAM 模块分别嵌入于 C3、C4

和 C5 层的输出之后，通过通道注意力的无降维跨

通道交互和空间注意力的显著性编码，增强模型对

遮挡、重叠和光照变化等复杂场景中关键区域的聚

焦能力，从而有效提升圣女果成熟度检测的精度。

1.3.2 局部注意力金字塔模块 由于圣女果的果

实体积较小，其特征在浅层特征图上分辨率低、局部

信息不明显，导致小尺度目标难以被有效捕获，现有

模型的检测性能受到显著限制。尽管 YOLOv11 通

过 FPN+PAN 结构实现了多尺度特征融合，但对于小

尺度目标特征表达的不一致性仍存在局限性。为解

决这一问题，笔者引入一种局部注意力金字塔模块

（LAPM），通过逐层增强小目标的显著特征而提升检

测精度。LAPM 的流程示意图如图 4 所示。

具体而言，LAPM 的输入为浅层特征图 F∈
RN×H×W×C。其中，N 表示批量大小，H 和 W 分别表示

图 4 LAPM 流程示意图

Fig. 4 LAPM process diagram
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激活函数实例归一化

Patch IN Sigmoid
激活函数实例归一化

Patch IN Sigmoid
激活函数实例归一化

特征图的高度和宽度，C 表示通道数。输入特征

图 F 被引入到金字塔结构的最顶层 p=n。逐层

向下进行分割与处理。在金字塔的第 p 层，输入

特征图 Fp 被划分成尺寸大小为 H/2p×W/2p 的多个

局部区域（patches），随着层级的降低，局部分块

的尺度逐步增大。在每个局部区域内执行实例

归一化（instance normalization，Patch IN），实现局

部特征的标准化，具体计算公式如下：

Patch IN（FP，p）＝
FP - μpat ch
ρpat ch + ε 。 （6）

式中，μpatch 和 ρpatch 分别表示当前局部区域的均

值和标准差，ε为数值稳定项，防止分母为 0。

对归一化后的特征图应用 Sigmoid 激活函数，

生成局部注意力图 wp，如公式（7）所示：

输入 Input（p=2） p=1 p=0 增强特征图 Enhanced feature map

Patch IN 实例
归一化

Sigmoid 激活
函数

Patch IN 实例
归一化

Sigmoid 激活
函数

Patch IN 实例
归一化

Sigmoid 激活
函数
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wp=M（Fp，p）= σ（Patch IN（Fp，p））。 （7）

式中，M（·，p）表示第 p 层的注意力图计算函

数。σ为 Sigmoid 激活函数，用于将归一化后的特征

映射到[0,1]范围，突出局部高响应区域的显著特征。

随后，将生成的局部注意力图 wp与输入特征图

Fp进行逐元素相乘，实现显著特征的加权增强。同

时，引入残差连接机制融合原始特征与注意力加权

特征，输出第 p-1 层的特征图 Fp-1，如公式（8）所示：

Fp-1= θ ×Fp+（1- θ）×wp Fp。 （8）

式中，θ为残差连接的权重系数， 表示逐元

素相乘操作。

第 p−1 层的输出特征图 Fp- 1 作为下一层的输

入，重复“局部分割→归一化→激活→加权增强”的

过程，逐层聚合多尺度注意力特征。最终，在最底

层 p=0 输出增强后的特征图 F-1，其计算过程如公式

（9）所示：

F-1= θ ×F0+（1- θ）×w0 F0 。 （9）

如图 2 所示，为进一步提升小尺度圣女果的检

测性能，将 LAPM 模块应用于浅层特征图 P3 和

P4。由于 P3 层特征图尺寸较大，设置金字塔层级

n=3，局部分块尺寸为{10×10，20×20，40×40，80×

80}；P4 层特征图尺寸较大，设置金字塔层级 n=2，局

部分块尺寸为{10×10，20×20，40×40}，处理后的特征

图 P3'和 P4'的计算过程如公式（10~11）所示：

P4'=LAPM（P4，n=2）； （10）

P3'=LAPM（P3，n=3）。 （11）

式中，n 表示金字塔的最高层级。

LAPM 模块通过逐层局部分割、实例归一化和

注意力加权的方式，实现对小尺度目标显著特征的

逐级增强。通过金字塔结构在不同尺度上对局部

区域进行特征提取和融合，捕获多尺度下的小目标

信息，为圣女果成熟度检测任务中小目标特征的有

效建模提供支持。

1.3.3 改进损失函数 在目标检测任务中，损失函

数设计对模型性能具有关键影响。YOLOv11 的损

失函数由分类损失和回归损失两部分组成。其中，

分类损失采用可变焦点损失（varifocal loss，VFL）。

回归损失由分布式焦点损失（distribution focal

loss，DFL）和完全交并比损失（complete intersection

over union，CIoU）构成。

CIoU 损失函数通过结合预测框与真实框的重

叠面积、中心点距离以及长宽比等几何特性，引导

模型对边界框进行精确优化。

虽然 CIoU 损失函数在优化目标几何特性方面

具有优势，但其长宽比相似性度量指标 v 仅衡量预

测框与真实框整体的长宽比差异，未能解耦宽度和

高度的独立变化。这一局限性导致模型对尺度变化

敏感的小目标优化效果较差，从而影响检测精度。

为此，EIoU（efficient intersection over union）损

失函数 [22]被提出。EIoU 在 CIoU 的基础上引入宽

度和高度的独立优化，通过分解宽高几何差异，增

强边界框几何特征的表达能力。

尽管 EIoU 在几何特征表达方面取得一定进

展，但其在预测框与真实框距离较远时收敛速度较

慢，同时宽度和高度的优化计算较为复杂，仍存在

训练效率低下的问题。为解决上述问题，提出一种

新的损失函数（efficient geometric regression loss，

LEGR）。LEGR在保留 EIoU 宽高解耦思想的基础上，结

合 CIoU 的长宽比调整方法，对宽度、高度和中心点

距离进行联合优化。通过提升初期收敛速度和优

化计算效率，能够更加精确地度量预测框与真实框

之间的几何相似性，并提升边界框回归性能。LEGR

损失函数计算公式（12）如下：

LEGR=1-IoU+αv+
ρ2（b，b

gt
）

c2
+

ρ2（w，w
gt
）

c2
w

+
ρ2（h，h

gt
）

c2
h

（12）

式中，αv 用于初期快速调整预测框比例。

综上，笔者提出的 SSPENet 圣女果成熟度检测

算法的总损失 Lsum，如公式（13）所示：

Lsum=LVFL+LDFL+LEGR 。 （13）

通过引入 LEGR，模型能够更高效地优化边界

框的几何特性，进一步提升小尺度目标的定位精

度，从而增强圣女果成熟度检测中小目标的检测

性能。

1.4 试验环境配置与网络参数设置

为确保圣女果成熟度检测试验的公平性，本文

涉及的所有试验均在相同硬件平台上进行。具体

的硬件配置和软件环境如表 2 所示。

在训练过程中将输入图像尺寸设置为 640×

640，初始学习率设置为 0.01，最小学习率为 0.000 1，

训练轮次为 300，批量大小为 8。动量参数和权重

衰减分别设置为 0.937 和 0.000 5。优化器选用

Ranger（融合 RAdam 和 Lookahead 方法的优化器），

并结合自适应梯度调整策略（adaptive gradient ad-

justment）动态调整学习率，以增强模型的收敛效果

与训练稳定性。

1.5 评价指标

对于圣女果果实成熟度检测任务而言，模型的

段新娥，等：基于SSPENet的圣女果成熟度检测算法
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评估需同时兼顾检测精度与处理效率。为此，采用

准确率（precision，P）、召回率（recall，R）、平均精度

均值（mean average precision，mAP）对各模型在圣

女果成熟度检测中的性能进行定量评价。同时，利

用检测速度（frames per second，FPS）作为衡量模型

实时性能的重要指标。此外，还通过参数量（num-

ber of parameters，Params）和浮点运算次数（floating

point operations，FLOPs）评估模型的计算复杂度和

存储需求。

2 结果与分析

2.1 不同注意力机制算法对比

为进一步验证所构建的 SSAM 注意力机制在圣

女果果实成熟度检测中的有效性，在骨干网络中分别

嵌入 CBAM[22]、SE[23]和 ECA[24]注意力机制，在圣女果

果实成熟度数据集上进行对比，试验结果如表 3 所示。

由表 3 可知，嵌入不同注意力机制后，模型的

检测精度、召回率及平均精度均值均有所提升，表

明注意力机制的引入能够有效增强网络对特征信

息的捕获能力，从而提升整体检测性能。ECA 机制

通过避免全连接操作，达到了 93.2%的 mAP，略优

于 SE 注意力机制。CBAM 机制结合空间与通道注

意力 ，使 mAP 提升至 94.7% ，但帧率下降至

91.5 FPS。其中，SSAM 实现了 96.6%的准确率，相

比未使用注意力机制，提升了 3.5 百分点。此外，召

回率和 mAP 分别达到了 93.9%和 96.1%，均优于其

他注意力机制。SSAM 在保持较高精度和召回率

的同时，实现了 94.7 FPS 的检测速度，表明其能够

兼顾检测性能与实时性，适用于圣女果果实成熟度

检测任务中的复杂场景。

为进一步直观展示不同注意力机制对圣女

果 果 实 成 熟 度 检 测 特 征 的 影 响 ，采 用

Grad-CAM[25]类激活热力图对模型的 3 个输出层

进行可视化分析。通过热力图可明确模型预测

时的注意区域，揭示其对目标特征的关注分布，

从而提高模型的可解释性。试验对比结果如图 5

所示，其中红色区域越鲜亮、面积越大，表示模型

的预测关注度越高。

由图 5 可知，当骨干网络分别引入 CBAM、

ECA 和 SE 注意力机制时，网络对密集分布的圣女

果果实信息的捕获能力仍存在一定不足，尤其是 SE

注意力机制，其关注区域较为分散且覆盖范围有

限，目标特征捕获不充分。相比之下，SSAM 注意

力机制对圣女果成熟度特征的关注程度最高，能够

更加精准地捕获目标的空间位置信息，同时在复杂

场景中快速聚焦关键区域，展现出更强的特征表达

能力与定位能力。

2.2 不同损失函数对比

为验证 LEGR损失函数的有效性，针对目标检测

模型的回归损失部分进行系统的对比试验。选取

CIoU、EIoU、GIoU（generalized intersection over

union）[26]、DIoU（distance intersection over union）[27]、

SIoU（segmented intersection over union）[26] 进行对

比，以评估它们在圣女果果实成熟度检测任务中的

性能差异。试验结果如表 4 所示。

由表 4 可知，不同损失函数对圣女果成熟度

检测任务中的性能差异明显。GIoU 和 DIoU 分

别实现 92.6%和 94.8%的 mAP，但在召回率和准

确率上表现一般，表明其在边界框几何优化中的

能力存在局限性。EIoU 通过改进边界框的宽高

比调整和中心点定位策略 ，将 mAP 提升至

95.0%，明显优于 GIoU 和 DIoU。SIoU 进一步改

进宽高比例匹配，mAP 达到 95.5%，准确率和召

回率也有所提升，展现了其在几何特性优化中的

优势。相比之下，LEGR 通过提升初期收敛速度和

优化计算效率，更精确地度量了预测框与真实框

的几何相似性，从而全面提升模型检测性能。其

准确率、召回率和 mAP 分别达到 96.6%、93.9%和

表 2 试验硬件配置和软件环境

Table 2 Experiment hardware configuration and

software environment

硬件

Hardware

CPU

GPU

内存

Memory

硬盘

Hard disk

配置参数

Parameters

Intel Core i9-10900K CPU

NVIDIA GeForce RTX

2080 Ti 11 G

64 G

2 T

软件

Software

操作系统

Operating system

PyTorch

CUDA

CUDNN

配置参数

Parameters

Ubuntu 18.04

1.8.0

11.2

8.1.0

表 3 不同注意力机制性能对比

Table 3 Comparison of performance of different attention

mechanisms

注意力机制

Attention mechanism

无 None

SE

ECA

CBAM

SSAM

准确率

P/%

93.1

93.8

94.2

95.8

96.6

召回率

R/%

88.1

90.4

92.6

93.3

93.9

平均精度均值

mAP/%

90.2

91.7

93.2

94.7

96.1

检测速度

FPS

96.1

92.3

95.7

91.5

94.7
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96.1%，进一步证明了其在小目标检测任务中的高

效性。

2.3 消融试验

通过消融试验分析 SSAM 注意力机制、LAPM

模块和 LEGR损失函数对检测性能的影响。所有试验

均在相同的环境和超参数设置下进行，以确保结果的

准确性。SSPENet 模型的消融试验结果如表 5 所示，

其中“√”表示启用该模块，“×”表示未启用该模块。

由表 5 可以看出，单独引入 SSAM 注意力机制

后，模型的 mAP 提升至 92.3%，同时参数量略微增

加至 2.7 M，FLOPs 增至 6.9 G，表现出明显的精度

提升效果。仅嵌入 LAPM 模块后，mAP 达到

92.0%，并在计算效率方面保持较优表现，展现出良

好的适用性。采用 LEGR 损失函数后，mAP 提升至

注：A 为果实重叠场景；B 为枝叶遮挡严重场景；C 为背景叶片干扰场景。

Note: A. A scene characterized by overlapping fruits; B. A scene with severe occlusion caused by branches and leaves; C. A scene affected by

background interference from foliage.

图 5 不同注意力机制在各种复杂环境的类激活热力图

Fig. 5 Activation heat maps of different attention mechanisms in various complex environments

表 4 不同损失函数对比试验

Table 4 Comparative experiment of different loss

functions

损失函数

Loss function

CIoU

EIoU

GIoU

DIoU

SIoU

LEGR

准确率

P

96.0

95.9

94.3

95.4

96.2

96.6

召回率

R

92.8

93.4

91.2

92.7

93.7

93.9

平均精度均值

mAP

95.2

95.0

92.6

94.8

95.5

96.1

表 5 消融试验

Table 5 Comparative experiment of different loss functions

YOLOv11

√
√
√
√
√
√

SSAM

×

√
×

×

√
√

LAPM

×

×

√
×

√
√

LEGR

×

×

×

√
×

√

平均精度 AP/%

未成熟

Raw

90.1

91.9

91.5

91.4

94.8

95.3

半成熟

Medium raw

90.9

92.1

91.7

91.7

94.7

95.9

成熟

Ripe

92.0

92.9

92.8

92.6

96.1

97.1

召回率

R/%

89.9

91.5

91.1

90.9

92.8

93.9

平均精度均值

mAP/%

91.0

92.3

92.0

91.9

95.2

96.1

检测速度

FPS

99.8

98.5

97.8

99.3

96.3

94.7

参数量

Params/M

2.6

2.7

2.8

2.6

2.9

2.9

浮点运算次数

FLOPs/G

6.5

6.9

7.5

6.5

8.1

8.1

A

B

C

原图

Original image
CBAM ECA SE SSAM
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91.9%，进一步验证了其在优化边界框回归任务中

的有效性。当 SSAM 和 LAPM 模块联合使用时，

mAP 进一步提升至 95.2%，展现了注意力机制与局

部金字塔模块在特征提取和表达上的协同作用。

最终，结合 3 种改进策略后模型的 mAP 提升至

96.1%，而参数量仅增加 0.3 M，表明联合使用多种

改进模块能够在明显提升检测精度的同时，保持良

好的实时性能，从而实现检测效率与准确性的平

衡。图 6 展示了改进前后模型各类别及整体 mAP

的 P-R 曲线。

通常情况下，P-R 曲线所围成的面积越大，模型

的综合性能越优。由图 6-A 和图 6-B 的面积对比

可以看出，所提出的 SSPENet 在各类别上的检测性

能均有所提升，其 P- R 曲线的包围面积较 YO-

LOv11 明显增大，进一步验证了 SSPENet 在检测精

度和整体性能上的优越性。

2.4 不同模型对比

为验证 SSPENet 模型在圣女果成熟度检测中

的有效性，在自建数据集上将其与 9 种主流检测方

法进行比较。包括 Faster R- CNN、SSD、Deform-

able- DETR[28]、DINO[28]、RT- DETR[28]、YOLOX、YO-

LOv9、YOLOv10和YOLOv11。对比结果如表6所示。

由表 6 可知，Faster R-CNN 作为双阶段检测算

法，在 mAP 方面达到了 85.7%，展现出较高的检

测精度，但由于计算复杂度较高，检测速度仅为

6.9 FPS，难以满足实时检测需求。DINO 和 RT-DE-

TR 在 mAP 方面分别达到 88.9%和 89.0%，虽优于

YOLOX 模型，但计算开销较大，未能实现精度与效

率的良好平衡。YOLOv9 以最少的参数量和 7.7 G

的 FLOPs 实现了 89.3%的 mAP，表现出较高的检

测效率；YOLOv10 将 mAP 提升至 90.2%，但检测速

度略有下降；YOLOv11 进一步优化了精度与速度

的平衡，实现了 91.0%的 mAP 和 99.8 FPS 的检测

速度，在 YOLO 系列算法中表现最佳。而 SSPENet

模型在 mAP 上达到 96.1%，相较于上述算法分别提

升 10.4、11.3、6.9、7.2、7.1、8.2、6.8、5.9 和 5.1 百分

点，尽管 SSPENet 的帧率略低于 YOLOv9 和 YO-

LOv10，但在保持高实时性的同时，实现了最高的检

测精度，展现出优越的综合性能。

为直观展示算法改进前后的检测效果，选取检

测精度较高的 4 种模型对不同场景下圣女果的果实

成熟度图像进行对比测试，检测效果如图 7 所示。

注：A 为 YOLOv11 模型 P-R 曲线；B 为 MSASNet 模型 P-R 曲线。

Note: A. P-R curve of the YOLOv11 model; B. P-R curve of the MSASNet model.

图 6 改进前后模型在圣女果果实成熟度数据集上的 P-R 曲线图

Fig. 6 P-R curves of the model before and after improvement on cherry tomatoes fruit maturity dataset

表 6 对比试验

Table 6 Contrast experiment

算法

Algorithm

Faster R-CNN

SSD

Deformable-DETR

DINO

RT-DETR

YOLOX

YOLOv9

YOLOv10

YOLOv11

SSPENet

准确

率

P/%

86.3

85.5

89.9

89.2

89.7

88.4

90.0

90.7

91.2

96.6

召回

率

R/%

85.0

83.8

88.8

88.4

88.7

86.9

88.7

89.3

89.9

93.9

平均精

度均值

mAP/%

85.7

84.8

89.2

88.9

89.0

87.9

89.3

90.2

91.0

96.1

检测

速度

FPS

6.9

17.6

58.6

55.4

62.4

68.4

101.2

100.3

99.8

94.7

参数量

Params/

M

102.7

29.4

40.0

47.5

20.0

9.0

2.0

2.3

2.6

2.9

浮点运

算次数

FLOPs/G

168.4

99.1

173.0

178.5

99.1

26.8

7.7

6.7

6.5

8.1

精
度

P
/%
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0
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通过对图 7-A、图 7-B 和图 7-C 中不同模型检

测结果的对比分析可知，在遮挡严重、果实重叠及

光照变化显著等复杂场景下，YOLOv9 与 YO-

LOv10 模型普遍存在较高的误检率，表现出较弱的

环境适应性。尽管 YOLOv11 在常规场景下具备较

强的目标检测能力，但在逆光或强遮挡条件下仍存

在漏检现象。造成上述问题的原因在于现有模型

在多目标密集分布和局部特征模糊的情形下，特征

提取与空间关注能力有限，难以有效区分关键目标

区域。相较而言，SSPENet 在各类复杂场景中均展

现出更优越的检测性能：在强遮挡区域，所引入的

SSAM 注意力机制能够聚焦于果实边缘及显著特

征区域，提升对局部结构的敏感性；在果实密集重

叠场景中，LAPM 模块通过金字塔式多尺度建模，

有效缓解了检测框重叠及目标混淆问题；而在光照

变化剧烈的条件下，模型仍能保持较高的检测稳定

性与一致性。此外，SSPENet 模型在所有检测目标

上的置信度分布均明显高于其他对比算法，表明其

具备更强的特征判别能力和更好的环境适应性，进

一步验证了其在圣女果成熟度检测任务中的稳定

性与实用性。

3 讨论与结论

目前，果蔬图像识别研究多集中于目标检测模

型的整体精度提升与计算效率优化，但在果实成熟

度识别这一细分方向中，针对不同成熟阶段果实间

细粒度颜色与形态特征的表达能力仍显不足。尤

其在自然采集条件下，由于光照变化、枝叶遮挡、果

实堆叠及背景复杂等因素干扰，现有模型在区分

不同成熟度阶段果实时仍易出现误判，制约了模

型在真实生产环境中的识别稳定性与通用性。为

解决上述问题，笔者提出了一种 SSPENet 圣女果

成熟度识别模型，在整体网络结构中引入空间注

意力机制与多尺度特征融合模块，以提升模型对

果实表面颜色分布、边缘特征及细粒度形态差异

的表达能力。试验结果表明，SSPENet 模型在保

持低计算复杂度的同时，平均识别精度达到

96.1%，较其他主流模型在成熟度分类精度方面更

具优势。

从 部 署 角 度 而 言 ，SSPENet 推 理 速 度 为

94.7 FPS，可满足设施农业中对果实成熟状态实时

识别的响应要求，适用于自动巡检机器人、移动采

摘辅助终端等智能农机系统的集成部署。同时，模

型在不同光照条件下依然表现出良好的鲁棒性，具

备一定的推广应用潜力。尽管模型整体表现良好，

但在复杂实际应用环境中仍存在以下几个关键问

题需进一步解决：

（1）在果实密集分布、遮挡严重或背景干扰显

著的场景中，模型易出现漏检或误检现象，影响整体

识别准确性。后续将通过引入图像增强与边缘注意

力机制，提升模型在复杂背景下的目标区域分离与

边界表达能力，从而进一步提高目标定位精度。

（2）半成熟阶段果实的颜色呈连续过渡特征，

模型在中间态分类判断上存在混淆。未来工作将

通过增加该类样本数量并引入渐变性标签标注策

略，构建多标签或弱监督分类结构，以提升模型对

果实成熟度连续状态的建模能力。

综上所述，SSPENet 模型在识别精度、推理效

率以及复杂环境适应性方面均表现良好，能够为圣

女果采前成熟度分级、果实发育监测等环节提供可

靠的图像识别技术支撑。研究结果为果蔬智能识

别系统在设施农业中的落地应用提供了技术基础，

YOLOv9 YOLOv10 YOLOv11 SSPENet

(a)

(b)

(c)

注：A 为逆光及果实重叠场景；B 为顺光及枝叶遮挡场景；C 为

顺光及果实重叠场景。

Note: A. A scene under backlighting conditions with overlapping

fruits; B. A front- lit scene with occlusion caused by branches and

leaves; C. A front-lit scene featuring overlapping fruits.

图 7 不同算法检测结果的可视化对比

Fig. 7 Visual comparison of detection results of different

algorithms

A

B

C

YOLOv9 YOLOv10 YOLOv11 SSPENet
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具有较好的推广前景和较高的实用价值。
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