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Analysis of shoot color formation mechanism and identification of key
transcription factors in Erythropalum scandens based on transcriptome

sequencing

HUANG Ruolan, WEI Wanling, YANG Haixia, LI Hengrui, HE Wen, HUANG Zhenling

(Guangxi South Subtropical Agricultural Science Research Institute/Chongzuo Key Laboratory of Crop Gene Resources and Genetic Im-
provement/Guangxi Fruit and Vegetable Industry Technology Innovation Center, Chongzuo 532415, Guangxi, China)

Abstract: This study used tender leaves of Erythropalum scandens (Longzhou green shoot and Longzhou red shoot) as
materials. Through transcriptome sequencing, the differences in gene expression between the two differently colored ten-
der leaves were compared to screen for differentially expressed genes and related pathways. The aim was to elucidate the
regulatory mechanisms underlying shoot color formation in Erythropalum scandens at the molecular level. The results
showed that, compared to green shoots, the chlorophyll content in red shoots significantly decreased, while the carotene
content significantly increased. Transcriptome analysis identified a total of 3656 differentially expressed genes, of which
1962 were up-regulated and 1694 were down-regulated. KEGG enrichment analysis revealed that the differentially ex-
pressed genes were mainly enriched in pathways such as transcription factors, protein phosphatases and associated pro-
teins, ubiquitin system, starch and sucrose metabolism, plant hormone signal transduction, glycosyltransferases, and pho-
tosynthesis. Further analysis revealed that the expression of the transcription factor SPL15 was significantly down-regulat-
ed in red shoots, potentially leading to the up-regulation of the branch-point enzyme gene LCYE in the carotene biosynthe-
sis pathway by activating key factors in the light signaling pathway. In conclusion, the formation of red shoots in Erythro-
palum scandens may be closely associated wiht the regulation of the light signal pathway.
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Fig. 1 Red and green shoots of Erythropalum scandens
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Fig. 2 Chlorophyll and carotenoid contents of Erythropalum scandens with different shoot colors
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Fig. 3 Distribution of different lengths of unigenes in Erythropalum scandens
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Fig. 7 Expression pattern analysis of transcription factors
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