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Comparative study on secondary metabolites characteristics of cultivat-
ed tender and mature leaves of Asplenium nidus based on widely targeted

metabolomics
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(1. College of Tropical Crops, Yunnan Agricultural University, Pu’ er 665099, Yunnan, China; 2. Jinghong Seed Industry Development
Center; Jinghong 666106, Yunnan, China)

Abstract: Using Asplenium nidus cultivated in Pu'er city's modern agricultural base as experimental material, a widely tar-
geted metabolomics analysis was performed on mature leaves(C group) and tender leaves(D group)via ultra-high-perfor-
mance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS). Orthogo-
nal partial least squares discriminant analysis(OPLS-DA) was employed to screen differential metabolites, and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway enrichment was conducted to reveal metabolic regulatory networks,
thereby elucidating the molecular mechanisms underlying secondary metabolic differences between tender and mature
leaves during artificial cultivation. The results showed that a total of 647 metabolites were identified in the leaves of Asple-
nium nidus, with 276 significantly differential metabolites identified, including 198 up-regulated and 78 down-regulated.
KEGG pathway enrichment analysis revealed that the biosynthesis of alkaloids such as tropane derivatives, as well as fla-
vonoid and flavonol biosynthesis pathways, played crucial roles in the observed metabolic differences. In conclusion, leaf
age significantly influences the metabolomic profile of Asplenium nidus. Steroidal alkaloids are markedly up-regulated in
tender leaves, whereas flavonoids are enriched in mature leaves, with differential metabolites mainly concentrated in alka-

loid and flavonoid biosynthetic pathways. These results reveal the metabolic regulation characteristics of 4. nidus at differ-
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ent leaf ages and provide a scientific basis for optimizing harvest time, developing bioactive compounds, and evaluating-

medicinal value.

Key words: Asplenium nidus; Steroidal alkaloids; Flavonoids; Metabolic heterogeneity
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Table 1 Chemical classification of metabolites

BEBREREN A

in Asplenium nidus

gy
FRR Class i&uiber Ili(fsortion/%
FERIR MR IR 236 36.5
Shikimic acid and phenylpropionic acid

2% Terpenoids 122 18.8
A Alkaloids 100 15.5
BRI 38 5.9

Amino acids and short peptides

% Polyketone 35 5.4

HE iR Fatty acid 34 5.3
/K Ak &4 Carbohydrate 28 43

HoAth/A 4325 Others/Unclassified 54 8.3

K7} Total 647 100.0

PC2(15.28%)

67.77% AR AR 7, HLATAAEA I i T B A5 X 1R
P BE 05 SRR B0 A0 HE K AR W R I A L S L, SR
A A o 6 1) S SRR AR AP E R E E R N
By T di ) 22 5, 0 S SR (C 41D 5 ot
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R RBEZE D E SR ZE RV I ERE,
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1.0, P<<0.05), B k& 56 (n=200) & 7R Fr 47 BEA LR 7Y
) 024543 A1 <0.78 (I 4) , JEBE R TN G ) &8 2% 7=
T RN (2 028 =-0.39, P<0.001; & 5),
K RERAZIWETI. /oEP CDA

m 152 Flavonoids

m %4 % Phenylpropanoids

® [} R Phenolic acids

m AJE & Lignans

B 7 & % 2% CoumarinsCoumarins
& b Others

8 KL P B2 Diarylheptanoids

El1 FEREERR K5 EGE

Fig 1 Pie chart of secondary classification of shikimic acid and phenylpropionic acid
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Fig. 2 PCA analysis of secondary metabolites of two leaf developmental stages
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Fig. 3 Cluster heatmap analysis of metabolites in leaves at two developmental stages
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. C . FEBLIR KOR A ERZE Shikimic acid and phenylpropionic acid
. D i 2% Terpenoids

U W Alkaloids
. FIEFR K 4 Ik Amino acids and short peptides
. M Polyketone
. JIEI % Fatty acid
U BRI &) Carbohydrate
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Fig. 4 Permutation test of OPLS-DA model for
C group vs D group
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Fig. 5 Permutation test of OPLS-DA model for
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Fig. 6 Score scatter plot of OPLS-DA model for C group vs D group
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Table 2 Classification of metabolites by chemical
structure and their differential expression

24 L i

FA3R Class Total Up-regulated Down-regulated
B YN E SIS 9% 6l 35
Shikimates and phenylpropanoids

2% Terpenoids 56 43 13
Jig /74 Fatty acids 36 25 11
A Alkaloids 31 24 7
KA Carbohydrates 16 12 4
M5 Polyketides 13 11 2
SR MR 10 9 1
Amino acids and peptides

A/ A 5> 2 Others/Unclassified 18 13 5
&7t Total 276 198 78

XA R K 276 A 22 AR — b b 0
5 2 TR A L P 1) S B A ), B AR

W) 7= F B A5 L log, (fold-change) H , T2 57 48
AT 10 1) EIRAT R AR (R 3. giRK
B, 22 A h AR DK 3R R AR TR S il
FABNEE, Kb R E FHRENZE SR N
2k 3% (salsolidine) , H log,FC {4 14.21, N i
FIEBZE AR 2-[5-[2-[2-[ Q-FEF IO A
IR M - 2- ] P I 2 ik ] P ) D 5 PR g - 2- k] 9 R
(2- [5- [2- [2- [5- (2- hydroxypropyl) tetrahydrofu-
ran- 2- yl|propanoyloxy|propyl]tetrahydrofuran- 2- yl]
propanoic acid) , 2 log,FC {f4-0.17.
23 ERREMKEGG EE S

X A [E g 276 A= B AR AT
KEGG & &5 (Bl 8), RILIRAEACHE B e A &
£, B BN EERZ, H P ERIK, RIPZRNK
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Fig. 7 Volcano plot of differential metabolites for C group vs D group
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Table 3 Top 10 significantly up-regulated or down-regulated differential metabolites between two leaf ages of

Asplenium nidus

J75 R4 F% Metabolite name MR — 445y 9% Superclass CH Ql Q3  VIP LogFC
1 JEESEE Salsolidine AW Alkaloids 208.13 191.12 1.30 14.21
2 PR Pimelic acid JIG R Fatty acids 159.07 97.07 130 12.28
30 2-AE-3-(10-FE-2,7- AR -5 SRR T IR IR AW Hydroxy acids 322,13 85.03 1.30 11.59

2-Hydroxy-3-(10-methyl-2,7-dioxooxecan-5-yDsulanylpropanoic acid

4 2-FRdk- 6 PRI TR IRELIR MR IR 167.03 123.05 1.30 11.19

2-Hydroxy-6-methoxybenzoic acid Shikimates and phenylpropanoids

T G4 Aloperine AR Alkaloids 23320 98.10 1.30  9.66

H1 4 ZX 75 /K B Naringenin chalcone FERLIE SR TN IR 271.06 151.01 1.30  9.10
Shikimates and phenylpropanoids

K4 KE W SER Carabrone 58 Terpenoids 266.18 145.10 1.30  7.65

9-FHE-7- - 1,4a- 1 HE-2,3,4,9,10,10a- 7S E E-1- R R 524 Terpenoids 31520 297.19 130  6.18

9-Hydroxy-7-isopropyl-1,4a-dimethyl-2,3,4,9,10,

10a-hexahydrophenanthrene- 1-carboxylic acid

9  Jl%I Spinacine VIR Alkaloids 168.08 95.06 1.09 5.33
10 & % 8E Fumaritine LR Alkaloids 356.15 277.09 1.04  4.60
11 2-[5-[2-[2-[(2-FRFE A 2 DU SRR -2- | N R4 | LU 2R Polyketides 387.24 111.08 1.25 -0.17

W-2-JE N R 2-[5-[2-[2-[5-(2-hydroxypropyDtetrahydrofuran-2-yl]
propanoyloxy]propyl]tetrahydrofuran-2-yl]propanoic acid

12 %508 Theophylline IR Alkaloids 179.06 164.03 1.06 -0.36
13 1,7,7-—H %-5-[(2R,3R,4S,5S,6R)-3,4,5- — F2 H-6- (R H 5L) 2 Terpenoids 389.19  89.02 1.07 —0.40

DY bR - 2- 2 S - XU [ 2.2, 1] e -2-
1,7,7-Trimethyl-5-[ (2R,3R,4S,5S,6R) -3 4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-ylJoxybicyclo[2.2.1]heptan-2-one
14 ZL5CKTF Salidroside FERLIR SR TN IR 299.11 119.05 1.12 -0.48
Shikimates and phenylpropanoids

15 JULEE LAk Galactinol /KA A4 Carbohydrates 341.11 89.02 124 -0.54
16 3 -ZJENRNE- 2 -fill 3-Aminopiperidin-2-one IR Alkaloids 115.09 70.07 1.20 -0.62
17 D-fi% & D-Proline TR L Ji K Amino acids and peptides 116.07 116.07 1.16 -0.67
18 ZF4E 4 D-(+)-Cellobiose /K 4k A4 Carbohydrates 401.13 161.05 1.24 —-0.74
19 ZREEFER Scopolamine B Alkaloids 304.16 138.09 1.15 -0.75

20  (2R,3S,4S,5R,6R)-2-CFZ HHE)-6-{[(2R,3S,4S,5R,6R)-3,4,5- AENi 2 Fatty acids 430.23 85.03 1.17 -0.76

SR AE-6- (2 F ) DU SN - 2- T H AU DY Sk I -3,4,5- = 8
(2R,38,4S,5R,6R)-2-(Hydroxymethyl)-6-[[ (2R,3S,4S,5R,
6R)-3,4,5-trihydroxy-6-pentan-2-yloxyoxan-2-ylJmethoxy]oxane-3,
4,5-triol
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ARi4HiE % Metabolic pathways i

e S AR W e Rt e AE 0B A= 40 & 1% Tropane, piperidine and pyridine alkaloid biosynthesis
TV EAS 5 7% F10 % Plant hormone signal transduction

ABC #1225 [1if #% ABC transporters e

AL Galactose metabolism

75 W AN T R B A ) A B Flavone and flavonol biosynthesis

W) F AR Biotin metabolism °
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